new_ir_compiler.h 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <absl/types/variant.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <memory>
#include <unordered_map>
#include "paddle/cinn/common/context.h"
#include "paddle/cinn/hlir/framework/op_strategy.h"
#include "paddle/cinn/lang/lower.h"
#include "paddle/cinn/lang/placeholder.h"
#include "paddle/cinn/utils/attribute_util.h"
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/program.h"

#include "paddle/cinn/hlir/framework/graph_compiler.h"

namespace cinn {
namespace hlir {
namespace framework {

34 35 36 37 38 39 40 41 42
struct CompatibleInfo {
  static constexpr char* kInputPrefix = "input_";
  static constexpr char* kOutputPrefix = "output_";
  // TODO(Aurelius): Need add name mapping logic in REGISTER_CINN_OP
  // macros or attempt to unify Op name with Paddle and CINN.
  static const std::unordered_map<std::string, std::string> OP_NAMES;
};

const std::unordered_map<std::string, std::string> CompatibleInfo::OP_NAMES = {
43 44 45 46 47 48 49 50 51 52
    {"pd.full", "fill_constant"}, {"pd.matmul", "matmul"}};

// TODO(Aurelius84): Need abstract this logic to implement Proxy for
// the co-existance with GraphCompiler.
class NewIRCompiler final {
 public:
  NewIRCompiler(const ::ir::Program& prog,
                const Target& target,
                const std::shared_ptr<Scope>& scope)
      : program_(prog),
53
        m_builder_("NewIR", target),
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        target_(target),
        scope_(scope) {}
  std::unique_ptr<Program> Build() {
    m_builder_.Clear();
    // NOTE(Aurelius84): Currently only support each op for one group
    std::vector<std::vector<::ir::Operation*>> groups;
    for (auto it = program_.block()->begin(); it != program_.block()->end();
         ++it) {
      groups.push_back({*it});
    }
    VLOG(4) << "Groups size: " << groups.size();

    std::vector<std::vector<ir::LoweredFunc>> lowered_funcs;
    for (int i = 0; i < groups.size(); ++i) {
      lowered_funcs.emplace_back(GetOpFunc(*groups[i][0], i));
    }

    for (auto&& lowered_func : lowered_funcs) {
      ProcessFunction(lowered_func);
    }

    compiler_ = backends::Compiler::Create(target_);
    auto build_module = m_builder_.Build();
    compiler_->Build(build_module, "");

    auto instructions = BuildInstructions(groups);
80 81 82 83 84 85 86 87 88 89 90 91

    // TODO(Aurelius84): Instantiate all tensors on compile-time, which is
    // controlled by 'options.with_instantiate_variables' in GraphCompiler.
    // Moreover, it's better to implement InsertBufferHandlers() logic
    // to automatically insert Malloc and Free instructions.
    for (auto& name : scope_->var_names()) {
      std::string var_name({name.data(), name.size()});
      VLOG(4) << "Instantiate " << var_name << " on compile-time";
      auto* var = scope_->Var<Tensor>(var_name);
      auto& tensor = absl::get<Tensor>(*var);
      tensor->mutable_data(target_, tensor->type());
    }
92 93 94 95 96 97
    return std::make_unique<Program>(scope_, std::move(instructions));
  }

  std::vector<ir::LoweredFunc> GetOpFunc(const ::ir::Operation& op, int idx) {
    std::vector<ir::Tensor> inputs;
    std::vector<common::CINNValue> cinn_inputs;
98 99
    auto op_name = op.name();
    VLOG(4) << "GetOpFunc for op: " << op_name;
100 101 102 103
    // step 1: Deal with Oprands
    for (int i = 0; i < op.num_operands(); ++i) {
      auto in_value = op.operand(i);
      // TODO(Aurelius84): For now, use addr as name but it's not wise.
104 105
      std::string input_id = CompatibleInfo::kInputPrefix +
                             std::to_string(std::hash<::ir::Value>()(in_value));
106 107 108 109 110
      auto type_info =
          in_value.type().dyn_cast<paddle::dialect::DenseTensorType>();

      auto in_shape = phi::vectorize<int>(type_info.dims());
      auto dtype = type_info.dtype();
111 112
      ir::Tensor temp = lang::CreatePlaceHolder(
          in_shape, utils::ConvertIRType(dtype), input_id);
113 114 115 116
      inputs.push_back(temp);
      cinn_inputs.push_back(common::CINNValue(temp));
    }
    for (auto out_name : OpGetOutputNames(op)) {
117
      cinn_inputs.push_back(common::CINNValue(out_name));
118 119 120 121 122 123 124 125 126 127 128
    }

    VLOG(4) << "inputs.size(): " << inputs.size();

    // step 2: Deal with OpResult
    std::vector<Type> out_types;
    std::vector<std::vector<int>> out_shapes;
    for (int i = 0; i < op.num_results(); ++i) {
      auto out_value = op.result(i);
      auto type_info =
          out_value.type().dyn_cast<paddle::dialect::DenseTensorType>();
129
      out_types.push_back(utils::ConvertIRType(type_info.dtype()));
130 131 132 133 134 135 136 137 138
      auto out_shape = phi::vectorize<int>(type_info.dims());
      out_shapes.push_back(std::move(out_shape));
    }
    VLOG(4) << "out_types.size(): " << out_types.size();

    NodeAttr node_attrs;
    {
      VLOG(4) << "op.attributes():" << op.attributes().size();
      auto attrs = utils::ConvertAttributes(op.attributes());
139
      node_attrs.node_name = CompatibleInfo::OP_NAMES.at(op_name);
140 141 142 143 144 145
      node_attrs.attr_store = std::move(attrs);
    }
    auto& strategy = Operator::GetAttrs<StrategyFunction>("CINNStrategy");
    // NOTE(Aurelius84): Do we need replace all hlir::framework Operator with
    // ::ir::Program ?
    const hlir::framework::Operator* cinn_op =
146
        Operator::Get(CompatibleInfo::OP_NAMES.at(op_name));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    auto impl = OpStrategy::SelectImpl(
        strategy[cinn_op](node_attrs, inputs, out_types, out_shapes, target_));
    common::CINNValuePack C =
        impl->fcompute(common::CINNValuePack{cinn_inputs});
    poly::StageMap stages = C.back();
    // make sure all the tensors in the stages before schedule launch.
    for (int i = 0; i < C->size() - 1; i++) {
      ir::Expr temp = C[i];
      stages->InsertLazily(temp.as_tensor_ref());
    }
    C = impl->fschedule(C);
    for (int i = 0; i < C->size() - 1; i++) {
      ir::Expr temp = C[i];
      // checkout whether the tensor is with buffer.
      if ((!temp.as_tensor_ref()->buffer.defined() ||
           this->target_ != common::DefaultNVGPUTarget()) &&
          !stages[temp.as_tensor_ref()]->inlined()) {
        inputs.push_back(temp.as_tensor_ref());
      }
    }
    auto func = lang::LowerVec(
        GenOpFuncName(op, idx), stages, inputs, {}, {}, nullptr, target_);
    return func;
  }

  void ProcessFunction(const std::vector<ir::LoweredFunc>& lowered_funcs) {
    for (auto&& func : lowered_funcs) {
      for (auto&& arg : func->args) {
        std::string arg_name = arg.name();
        if (arg_name[0] == '_') arg_name = arg_name.substr(1);

        auto* var = scope_->FindVar(arg_name);
        // For argument buffer not in scope, create it.
        if (!var && arg.is_buffer()) {
          auto* new_var = scope_->Var<Tensor>(arg_name);
          auto& tensor = absl::get<Tensor>(*new_var);
          std::vector<Shape::dim_t> shape;
          for (auto& shape_dim : arg.buffer_arg()->shape) {
            CHECK(shape_dim.is_constant());
            shape.push_back(static_cast<int>(shape_dim.get_constant()));
          }
          tensor->Resize(Shape{shape});
          tensor->set_type(arg.buffer_arg()->dtype);
        }
      }
      m_builder_.AddFunction(func);
    }
  }

  std::vector<std::unique_ptr<Instruction>> BuildInstructions(
      const std::vector<std::vector<::ir::Operation*>>& groups) {
    std::vector<std::unique_ptr<Instruction>> instructions;
    for (int idx = 0; idx < groups.size(); ++idx) {
      // TODO(Aurelius84): only support single op in groups
      auto& op = *groups[idx][0];
      auto instr_name = op.name();
      auto instr =
          std::unique_ptr<Instruction>(new Instruction(target_,
                                                       scope_.get(),
                                                       OpGetInputNames(op),
                                                       OpGetOutputNames(op),
                                                       instr_name));
      auto& op_func_name = GenOpFuncName(op, idx);
      auto* fn_ptr = compiler_->Lookup(op_func_name);
      CHECK(fn_ptr);
      instr->SetLoweredFunc(reinterpret_cast<void*>(fn_ptr), op_func_name);
      // As some instruction like reduce, will generate more than one kernel.
      // So try to find the rest kernel, if it exists.
      // SetSubKernels(instr.get(), op_func_name);

      instr->Finalize();
      instructions.push_back(std::move(instr));
    }
    return instructions;
  }

 protected:
  const std::string& GenOpFuncName(const ::ir::Operation& op, int idx) {
    // TODO(Aurelius84): . will raise compiler error in pd.xxx, need more
    // elegant way to generate function name.
    std::string op_name = op.name().substr(3) + "_" + std::to_string(idx);
    std::string func_name = Context::Global().NewName("fn_" + op_name);
    func_names_.try_emplace(op_name, func_name);
    return func_names_.at(op_name);
  }

  std::vector<std::string> OpGetInputNames(const ::ir::Operation& op) {
    std::vector<std::string> names;
    std::unordered_set<std::string> repeat;
    for (int i = 0; i < op.num_operands(); ++i) {
      auto value = op.operand(i);
238 239
      std::string name = CompatibleInfo::kInputPrefix +
                         std::to_string(std::hash<::ir::Value>()(value));
240 241 242 243 244 245 246 247 248 249 250 251 252
      if (repeat.count(name)) {
        continue;
      }
      repeat.insert(name);
      names.push_back(name);
    }
    return names;
  }

  std::vector<std::string> OpGetOutputNames(const ::ir::Operation& op) {
    std::vector<std::string> names;
    for (int i = 0; i < op.num_results(); ++i) {
      auto value = op.result(i);
253 254
      std::string name = CompatibleInfo::kOutputPrefix +
                         std::to_string(std::hash<::ir::Value>()(value));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      names.push_back(std::move(name));
    }
    return names;
  }

 private:
  const ::ir::Program& program_;
  ir::Module::Builder m_builder_;
  std::unique_ptr<backends::Compiler> compiler_;
  Target target_;
  std::shared_ptr<Scope> scope_;
  std::unordered_map<std::string, std::string> func_names_;
};

std::shared_ptr<Scope> BuildScope(const Target& target,
                                  const ::ir::Program& program) {
  std::unordered_set<::ir::Value> visited;
  auto scope = std::make_shared<Scope>();

274
  auto create_var = [&](const std::string& name_prefix, ::ir::Value value) {
275 276 277
    if (visited.count(value) > 0) return;
    visited.emplace(value);

278 279
    std::string name =
        name_prefix + std::to_string(std::hash<::ir::Value>()(value));
280 281 282 283 284 285 286 287 288
    auto type_info = value.type().dyn_cast<paddle::dialect::DenseTensorType>();
    auto* var = scope->Var<Tensor>(name);
    auto& tensor = absl::get<Tensor>(*var);
    // NOTE: can be replaced with phi::vectorized ?
    std::vector<Shape::dim_t> shape;
    for (auto i = 0; i < type_info.dims().size(); ++i) {
      shape.push_back(Shape::dim_t(type_info.dims()[i]));
    }
    tensor->Resize(Shape{shape});
289
    tensor->set_type(utils::ConvertIRType(type_info.dtype()));
290 291 292 293 294
  };

  for (auto it = program.block()->begin(); it != program.block()->end(); ++it) {
    for (auto i = 0; i < (*it)->num_operands(); ++i) {
      auto in_value = (*it)->operand(i);
295
      create_var(CompatibleInfo::kInputPrefix, in_value);
296 297 298 299
    }

    for (auto i = 0; i < (*it)->num_results(); ++i) {
      auto out_value = (*it)->result(i);
300
      create_var(CompatibleInfo::kOutputPrefix, out_value);
301 302 303 304 305 306 307 308
    }
  }
  return scope;
}

}  // namespace framework
}  // namespace hlir
}  // namespace cinn