test_onnx_export.py 2.1 KB
Newer Older
C
channings 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import pickle
import unittest
import numpy as np
import paddle
from paddle.static import InputSpec


class LinearNet(paddle.nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = paddle.nn.Linear(128, 10)

    def forward(self, x):
        return self._linear(x)


class Logic(paddle.nn.Layer):
    def __init__(self):
        super(Logic, self).__init__()

    def forward(self, x, y, z):
        if z:
            return x
        else:
            return y


class TestExportWithTensor(unittest.TestCase):
    def setUp(self):
        self.x_spec = paddle.static.InputSpec(
            shape=[None, 128], dtype='float32')

Z
zhangchunle 已提交
50
    def test_with_tensor(self):
C
channings 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        model = LinearNet()
        paddle.onnx.export(model, 'linear_net', input_spec=[self.x_spec])


class TestExportWithTensor(unittest.TestCase):
    def setUp(self):
        self.x = paddle.to_tensor(np.random.random((1, 128)))

    def test_with_tensor(self):
        model = LinearNet()
        paddle.onnx.export(model, 'linear_net', input_spec=[self.x])


class TestExportPrunedGraph(unittest.TestCase):
    def setUp(self):
        self.x = paddle.to_tensor(np.array([1]))
        self.y = paddle.to_tensor(np.array([-1]))

    def test_prune_graph(self):
        model = Logic()
        paddle.jit.to_static(model)
        out = model(self.x, self.y, z=True)
        paddle.onnx.export(
            model, 'pruned', input_spec=[self.x], output_spec=[out])


if __name__ == '__main__':
    unittest.main()