cudnn_norm_conv.cu.h 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/fused/cudnn_fusion_helper.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
19 20 21

namespace paddle {
namespace operators {
22
using Tensor = phi::DenseTensor;
23 24
namespace dynload = platform::dynload;

25 26 27
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

28
#if CUDNN_VERSION >= 8000
29 30 31

static size_t RoundUp(int64_t a, int64_t b) { return (a + b - 1) / b * b; }

32
template <typename T>
33 34 35 36 37 38 39
struct NormConvolutionArgs {
  NormConvolutionArgs() {
    dtype = platform::CudnnDataType<T>::type;
    format = CUDNN_TENSOR_NHWC;
    compute_type = platform::CudnnDataType<float>::type;
  }

L
Leo Chen 已提交
40
  void Set(const phi::GPUContext &ctx,
41
           const std::vector<int> &input_shape,
42
           const std::vector<int> &filter_shape,
43 44 45 46 47
           const std::vector<int> &output_shape,
           int padding,
           int stride,
           int dilation,
           int group) {
48
    PADDLE_ENFORCE_EQ(
49 50
        input_shape.size(),
        4U,
51
        platform::errors::InvalidArgument(
52
            "The size of input_shape is expected to 4. But received "
53
            "input_shape's size is %d, input_shape is [%s].",
54 55
            input_shape.size(),
            phi::make_ddim(input_shape)));
56
    PADDLE_ENFORCE_EQ(
57 58
        filter_shape.size(),
        4U,
59
        platform::errors::InvalidArgument(
60
            "The size of filter_shape is expected to 4. But received "
61
            "filter_shape's size is %d, filter_shape is [%s].",
62 63
            filter_shape.size(),
            phi::make_ddim(filter_shape)));
64 65 66 67 68
    PADDLE_ENFORCE_EQ(filter_shape[1] == filter_shape[2] &&
                          (filter_shape[1] == 1 || filter_shape[1] == 3),
                      true,
                      platform::errors::InvalidArgument(
                          "The filter_shape is expected to store as nhwc, and "
69
                          "h = w = 1 or 3. But received filter_shape is [%s].",
70
                          phi::make_ddim(filter_shape)));
71 72 73 74 75
    PADDLE_ENFORCE_EQ((filter_shape[0] % 32 == 0 && filter_shape[3] % 8 == 0),
                      true,
                      platform::errors::InvalidArgument(
                          "The input channel is expected to be multiple of 8, "
                          "and the output channel is expected to be multiple "
76
                          "of 32. But received input channel is %d, output "
77
                          "channel is %d.",
78 79
                          filter_shape[3],
                          filter_shape[0]));
80
    PADDLE_ENFORCE_EQ(
81 82
        output_shape.size(),
        4U,
83
        platform::errors::InvalidArgument(
84
            "The size of output_shape is expected to 4. But received "
85
            "filter_shape's size is %d, filter_shape is [%s].",
86 87
            output_shape.size(),
            phi::make_ddim(output_shape)));
88 89
    is_support = IsSupport(ctx, filter_shape, stride, dilation, group);
    PADDLE_ENFORCE_EQ(
90 91
        is_support,
        true,
92 93 94 95 96
        platform::errors::InvalidArgument(
            "Current test is only supported in the platforms with "
            "compatiblity greater than or equal to 70 and the kernel size "
            "must be equal to 1 or 3. When the kernel size is 1, "
            "the stride must be 1 if the compatiblity is equal to 70. "
97
            "Besides, the dilation and group must be equal to 1. But received "
98 99
            "compatiblity is %d, kernel size is %d, stride is %d, "
            "dilation is %d, group is %d",
100 101 102 103
            ctx.GetComputeCapability(),
            filter_shape[1],
            stride,
            dilation,
104
            group));
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    for (size_t i = 0; i < input_shape.size(); ++i) {
      in_dims.push_back(input_shape[i]);
    }
    for (size_t i = 0; i < filter_shape.size(); ++i) {
      filter_dims.push_back(filter_shape[i]);
    }
    paddings = {padding, padding};
    strides = {stride, stride};
    dilations = {dilation, dilation};

    in_desc.set(input_shape, format, dtype);
    filter_desc.set(filter_shape, format, dtype, group);
    out_desc.set(output_shape, format, dtype);

    int output_channel = filter_shape[0];
    std::vector<int> stats_shape = {1, 1, 1, output_channel};
    out_stats_desc.set(stats_shape, format, compute_type);

    conv_desc.set(dtype, paddings, strides, dilations, false, group);
  }

L
Leo Chen 已提交
127
  bool IsSupport(const phi::GPUContext &ctx,
128 129 130
                 const std::vector<int> &filter_shape,
                 int stride,
                 int dilation,
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                 int group) {
    int kernel_size = filter_shape[1];
    if (dilation != 1 || group != 1) {
      return false;
    }
    if (ctx.GetComputeCapability() == 70) {
      if ((kernel_size == 3) || ((kernel_size == 1) && (stride == 1))) {
        return true;
      }
    } else if (ctx.GetComputeCapability() > 70) {
      if ((kernel_size == 3) || (kernel_size == 1)) {
        return true;
      }
    }
    return false;
  }

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  cudnnDataType_t dtype;
  cudnnTensorFormat_t format;
  cudnnDataType_t compute_type;

  std::vector<int64_t> in_dims;
  std::vector<int64_t> filter_dims;
  std::vector<int> strides;
  std::vector<int> paddings;
  std::vector<int> dilations;

  platform::TensorDescriptor in_desc;
  platform::FilterDescriptor filter_desc;
  platform::TensorDescriptor out_desc;
  platform::TensorDescriptor out_stats_desc;
  platform::ConvolutionDescriptor conv_desc;
163 164

  bool is_support;
165 166 167 168
};

template <typename T>
class CudnnNormConvolution {
169
 public:
L
Leo Chen 已提交
170
  CudnnNormConvolution(const phi::GPUContext &ctx,
171 172
                       const std::vector<int> &input_shape,
                       const std::vector<int> &filter_shape,
173 174 175 176
                       const std::vector<int> &output_shape,
                       const int &padding,
                       const int &stride,
                       const int &dilation,
177
                       const int &group) {
178 179 180 181 182 183 184 185
    args_.Set(ctx,
              input_shape,
              filter_shape,
              output_shape,
              padding,
              stride,
              dilation,
              group);
186
  }
187
  ~CudnnNormConvolution() {}
188

L
Leo Chen 已提交
189
  void Forward(const phi::GPUContext &ctx,
190 191 192 193
               const Tensor &input,
               const Tensor &filter,
               Tensor *output,
               Tensor *sum,
194
               Tensor *sum_of_squares) {
195 196 197 198 199 200 201
    auto cudnn_handle = ctx.cudnn_handle();

    CudnnFusionOp *fwd_op = GetForwardOp(ctx);
    size_t workspace_size = RoundUp(
        static_cast<int64_t>(fwd_op->GetWorkspaceSizeInBytes(cudnn_handle)),
        512);

202 203
    // Set variant_param
    // input ptr
204 205
    T *input_ptr = const_cast<T *>(input.data<T>());
    T *filter_ptr = const_cast<T *>(filter.data<T>());
206 207 208 209 210
    fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_XDATA, input_ptr);
    fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WDATA, filter_ptr);
    fwd_op->SetOpVariantParamAttrPtr(
        CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES, &workspace_size);

211
    // output ptr
212 213 214 215 216
    T *output_ptr = ctx.template Alloc<T>(output, output->numel() * sizeof(T));
    float *sum_ptr =
        ctx.template Alloc<float>(sum, sum->numel() * sizeof(float));
    float *sum_of_squares_ptr = ctx.template Alloc<float>(
        sum_of_squares, sum_of_squares->numel() * sizeof(float));
217 218 219 220 221
    fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YDATA, output_ptr);
    fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YSUM, sum_ptr);
    fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YSQSUM, sum_of_squares_ptr);

    ctx.cudnn_workspace_handle().RunFunc(
222 223
        [&](void *workspace_ptr) {
          // workspace ptr
224
          fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, workspace_ptr);
225
          // fused op execute
226
          fwd_op->Execute(cudnn_handle);
227
        },
228
        workspace_size);
229 230
  }

231
 private:
L
Leo Chen 已提交
232
  CudnnFusionOp *GetForwardOp(const phi::GPUContext &ctx) {
233 234 235 236
    framework::AlgorithmsCache<CudnnFusionOp *> &cache =
        *(CudnnFusionOpCache::Instance().GetForward());

    CudnnFusionOp *fwd_op = cache.GetAlgorithm(
237 238 239 240 241 242 243 244
        args_.in_dims,
        args_.filter_dims,
        args_.strides,
        args_.paddings,
        args_.dilations,
        0,
        static_cast<int64_t>(args_.dtype),
        [&]() {
245 246 247 248
          CudnnFusionOp *fwd_op =
              new CudnnFusionOp(CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS);

          // Set constant_param
249 250 251 252
          fwd_op->SetOpConstParamAttr({CUDNN_PARAM_XDATA_PLACEHOLDER,
                                       CUDNN_PARAM_WDATA_PLACEHOLDER,
                                       CUDNN_PARAM_YDATA_PLACEHOLDER},
                                      CUDNN_PTR_16B_ALIGNED);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
          fwd_op->SetOpConstParamAttr(
              {CUDNN_PARAM_YSUM_PLACEHOLDER, CUDNN_PARAM_YSQSUM_PLACEHOLDER},
              CUDNN_PTR_16B_ALIGNED);

          // conv desc
          fwd_op->SetOpConstParamDesc(CUDNN_PARAM_CONV_DESC,
                                      args_.conv_desc.desc());
          // input desc
          fwd_op->SetOpConstParamDesc(CUDNN_PARAM_XDESC, args_.in_desc.desc());
          // filter desc
          fwd_op->SetOpConstParamDesc(CUDNN_PARAM_WDESC,
                                      args_.filter_desc.desc());
          // output desc
          fwd_op->SetOpConstParamDesc(CUDNN_PARAM_YDESC, args_.out_desc.desc());
          // output_stats desc
          fwd_op->SetOpConstParamDesc(CUDNN_PARAM_YSTATS_DESC,
                                      args_.out_stats_desc.desc());
          // batch_norm mode
          fwd_op->SetOpConstParamAttr(CUDNN_PARAM_BN_MODE,
                                      CUDNN_BATCHNORM_SPATIAL_PERSISTENT);

          // Make cudnn fused ops plan
          fwd_op->GetWorkspaceSizeInBytes(ctx.cudnn_handle());
          return fwd_op;
        });
    return fwd_op;
  }
280 281

 private:
282 283
  NormConvolutionArgs<T> args_;
};
284

285 286 287
template <typename T>
class CudnnNormConvolutionGrad {
 public:
L
Leo Chen 已提交
288
  CudnnNormConvolutionGrad(const phi::GPUContext &ctx,
289 290 291
                           const std::vector<int> &input_shape,
                           const std::vector<int> &filter_shape,
                           const std::vector<int> &output_shape,
292 293 294 295 296 297 298 299 300 301 302 303
                           const int &padding,
                           const int &stride,
                           const int &dilation,
                           const int &group) {
    args_.Set(ctx,
              input_shape,
              filter_shape,
              output_shape,
              padding,
              stride,
              dilation,
              group);
304 305 306
    dgrad_algo_ = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
  }
  ~CudnnNormConvolutionGrad() {}
307

L
Leo Chen 已提交
308
  void Backward(const phi::GPUContext &ctx,
309 310 311 312 313
                const Tensor &input,
                const Tensor &filter,
                const Tensor &output_grad,
                Tensor *input_grad,
                Tensor *filter_grad,
314 315 316 317 318 319
                bool use_addto = false) {
    T *input_ptr = const_cast<T *>(input.data<T>());
    T *filter_ptr = const_cast<T *>(filter.data<T>());
    T *output_grad_ptr = const_cast<T *>(output_grad.data<T>());

    if (filter_grad) {
320 321
      T *filter_grad_ptr =
          ctx.template Alloc<T>(filter_grad, filter_grad->numel() * sizeof(T));
322
      BackwardFilter(ctx, output_grad_ptr, input_ptr, filter_grad_ptr);
323
    }
324
    if (input_grad) {
325 326
      T *input_grad_ptr =
          ctx.template Alloc<T>(input_grad, input_grad->numel() * sizeof(T));
327
      BackwardData(ctx, output_grad_ptr, filter_ptr, input_grad_ptr, use_addto);
328 329
    }
  }
330

331
 private:
L
Leo Chen 已提交
332
  void BackwardFilter(const phi::GPUContext &ctx,
333 334 335
                      T *output_grad_ptr,
                      T *input_ptr,
                      T *filter_grad_ptr) {
336
    auto cudnn_handle = ctx.cudnn_handle();
337

338 339 340 341
    CudnnFusionOp *wgrad_op = GetBackwardFilterOp(ctx);
    size_t workspace_size = RoundUp(
        static_cast<int64_t>(wgrad_op->GetWorkspaceSizeInBytes(cudnn_handle)),
        512);
342

343 344 345 346 347
    wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_XDATA, input_ptr);
    wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_DYDATA, output_grad_ptr);
    wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_DWDATA, filter_grad_ptr);
    wgrad_op->SetOpVariantParamAttrPtr(
        CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES, &workspace_size);
348

349 350 351 352 353 354 355 356 357
    ctx.cudnn_workspace_handle().RunFunc(
        [&](void *workspace_ptr) {
          // workspace ptr
          wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE,
                                             workspace_ptr);
          // fused op execute
          wgrad_op->Execute(cudnn_handle);
        },
        workspace_size);
358 359
  }

L
Leo Chen 已提交
360
  void BackwardData(const phi::GPUContext &ctx,
361 362 363 364
                    T *output_grad_ptr,
                    T *filter_ptr,
                    T *input_grad_ptr,
                    bool use_addto = false) {
365 366 367 368 369 370 371 372
    auto cudnn_handle = ctx.cudnn_handle();
    size_t workspace_size = GetWorkspaceSizeBwdData(ctx);

    // Convolution dgrad followed optionally by batchnorm dgrad
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = use_addto ? 1.0f : 0.0f;
    ctx.cudnn_workspace_handle().RunFunc(
        [&](void *cudnn_workspace_ptr) {
373
          PADDLE_ENFORCE_GPU_SUCCESS(
374
              platform::dynload::cudnnConvolutionBackwardData(
375 376 377 378 379 380 381 382 383 384 385 386 387
                  cudnn_handle,
                  &alpha,
                  args_.filter_desc.desc(),
                  filter_ptr,
                  args_.out_desc.desc(),
                  output_grad_ptr,
                  args_.conv_desc.desc(),
                  dgrad_algo_,
                  cudnn_workspace_ptr,
                  workspace_size,
                  &beta,
                  args_.in_desc.desc(),
                  input_grad_ptr));
388 389
        },
        workspace_size);
390 391
  }

L
Leo Chen 已提交
392
  CudnnFusionOp *GetBackwardFilterOp(const phi::GPUContext &ctx) {
393 394 395 396
    framework::AlgorithmsCache<CudnnFusionOp *> &cache =
        *(CudnnFusionOpCache::Instance().GetBackward());

    CudnnFusionOp *wgrad_op = cache.GetAlgorithm(
397 398 399 400 401 402 403 404
        args_.in_dims,
        args_.filter_dims,
        args_.strides,
        args_.paddings,
        args_.dilations,
        0,
        static_cast<int64_t>(args_.dtype),
        [&]() {
405 406 407
          CudnnFusionOp *wgrad_op =
              new CudnnFusionOp(CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD);

408 409 410 411
          wgrad_op->SetOpConstParamAttr({CUDNN_PARAM_DYDATA_PLACEHOLDER,
                                         CUDNN_PARAM_XDATA_PLACEHOLDER,
                                         CUDNN_PARAM_DWDATA_PLACEHOLDER},
                                        CUDNN_PTR_16B_ALIGNED);
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426
          // conv desc
          wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_CONV_DESC,
                                        args_.conv_desc.desc());
          // input desc
          wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_XDESC,
                                        args_.in_desc.desc());
          // filter desc
          wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_DWDESC,
                                        args_.filter_desc.desc());
          // output desc
          wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_DYDESC,
                                        args_.out_desc.desc());
          wgrad_op->SetOpConstParamAttr(CUDNN_PARAM_BN_MODE,
                                        CUDNN_BATCHNORM_SPATIAL_PERSISTENT);
427

428 429 430 431 432 433 434
          // Make cudnn fused ops plan
          wgrad_op->GetWorkspaceSizeInBytes(ctx.cudnn_handle());
          return wgrad_op;
        });
    return wgrad_op;
  }

L
Leo Chen 已提交
435
  size_t GetWorkspaceSizeBwdData(const phi::GPUContext &ctx) {
436 437
    size_t workspace_size = 0U;
    auto handle = ctx.cudnn_handle();
438
    PADDLE_ENFORCE_GPU_SUCCESS(
439
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
440 441 442 443 444 445
            handle,
            args_.filter_desc.desc(),
            args_.out_desc.desc(),
            args_.conv_desc.desc(),
            args_.in_desc.desc(),
            dgrad_algo_,
446 447 448 449 450 451 452
            &workspace_size));
    return RoundUp(workspace_size, 512);
  }

 private:
  NormConvolutionArgs<T> args_;
  cudnnConvolutionBwdDataAlgo_t dgrad_algo_;
453
};
454

455 456 457
#endif
}  // namespace operators
}  // namespace paddle