elementwise_op_function.h 60.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18
#include <algorithm>
D
dzhwinter 已提交
19
#include <iterator>
20
#include <vector>
Y
Yi Wang 已提交
21 22 23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
25

C
chengduoZH 已提交
26
#ifdef __NVCC__
27
#include <cuda.h>
C
chengduoZH 已提交
28
#include <thrust/iterator/iterator_adaptor.h>
29
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
30
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
31
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
32 33
#endif

Y
Yi Wang 已提交
34
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/platform/for_range.h"
36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
46
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
47 48
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
49
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
50
 */
51 52 53
inline void get_mid_dims(const framework::DDim &x_dims,
                         const framework::DDim &y_dims, const int axis,
                         int *pre, int *n, int *post) {
54 55 56
  *pre = 1;
  *n = 1;
  *post = 1;
57
  for (int i = 0; i < axis; ++i) {
58
    (*pre) *= x_dims[i];
59 60 61 62 63
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
64
    (*n) *= y_dims[i];
65 66 67
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
68
    (*post) *= x_dims[i];
69 70 71
  }
}

72
inline framework::DDim trim_trailing_singular_dims(
73
    const framework::DDim &dims) {
74
  // Remove trailing dimensions of size 1 for y
75
  auto actual_dims_size = dims.size();
76
  for (; actual_dims_size != 0; --actual_dims_size) {
77
    if (dims[actual_dims_size - 1] != 1) break;
78
  }
79 80 81 82 83

  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
84
  }
85 86 87
  if (trim_dims.size() == 0) {
    return framework::DDim(framework::make_dim());
  }
88 89
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
90 91
}

Q
QI JUN 已提交
92
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
93
class RowwiseTransformIterator;
94

Q
QI JUN 已提交
95
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
96
class MidWiseTransformIterator;
C
chengduoZH 已提交
97

D
dzhwinter 已提交
98
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
C
chengduoZH 已提交
99
template <typename T>
D
dzhwinter 已提交
100 101 102
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
103
 public:
104
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
C
chengduoZH 已提交
105

106
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
107
    ++i_;
C
chengduoZH 已提交
108 109 110
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
111 112 113
    return *this;
  }

P
peizhilin 已提交
114
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
115
    while (n-- > 0) {
P
peizhilin 已提交
116 117 118 119 120 121 122 123 124
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

125 126
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
127
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
128 129
  }

130 131
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
132
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
133 134
  }

135
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
136

C
chengduoZH 已提交
137
 private:
138
  const T *ptr_;
C
chengduoZH 已提交
139
  int i_;
C
chengduoZH 已提交
140
  int64_t n_;
C
chengduoZH 已提交
141 142 143
};

template <typename T>
D
dzhwinter 已提交
144 145 146
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
147
 public:
148
  MidWiseTransformIterator(const T *ptr, int n, int post)
C
chengduoZH 已提交
149 150
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

151
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
152
    ++j_;
C
chengduoZH 已提交
153 154
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
155
      j_ = 0;
C
chengduoZH 已提交
156 157 158
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
159
    }
C
chengduoZH 已提交
160 161 162
    return *this;
  }

P
peizhilin 已提交
163
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
164
    while (n-- > 0) {
P
peizhilin 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }

    return *this;
  }

178 179
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
180
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
181 182
  }

183 184
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
185
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
186 187
  }

188
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
189

C
chengduoZH 已提交
190
 private:
191
  const T *ptr_;
C
refine  
chengduoZH 已提交
192
  int64_t i_;
C
chengduoZH 已提交
193 194
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
195
  int64_t post_;
C
chengduoZH 已提交
196 197
};

C
chengduoZH 已提交
198 199
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
200
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
201
    : public thrust::iterator_adaptor<
202
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
203 204
 public:
  typedef thrust::iterator_adaptor<
205
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
206
      super_t;
207
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
208
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
209 210 211 212
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
213
  const T *begin_;
C
chengduoZH 已提交
214
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
215 216 217 218 219
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
220
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
221
    : public thrust::iterator_adaptor<
222
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
223 224
 public:
  typedef thrust::iterator_adaptor<
225
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
226
      super_t;
227
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
228
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
229 230 231 232 233
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
234
  const T *begin_;
C
chengduoZH 已提交
235
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
236 237 238 239 240
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

241 242
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
243 244
class TransformFunctor {
 public:
245 246
  TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
                   framework::Tensor *z, const DeviceContext &ctx, Functor func)
C
chengduoZH 已提交
247 248
      : x_(x->data<T>()),
        y_(y->data<T>()),
249
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
250 251 252 253 254
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
255
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
256
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
257 258 259
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
260 261 262
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
263 264 265
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
266 267 268
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
269 270
  }

C
chengduoZH 已提交
271
 private:
272 273 274
  const T *x_;
  const T *y_;
  OutType *z_;
C
chengduoZH 已提交
275
  int64_t nx_;
276
  const DeviceContext &ctx_;
C
chengduoZH 已提交
277 278 279
  Functor func_;
};

280 281
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
282
    template <typename DeviceContext, typename T>                              \
283 284 285
    inline void Run(const framework::Tensor *x, const framework::Tensor *y,    \
                    framework::Tensor *z,                                      \
                    const framework::ExecutionContext &ctx) {                  \
286 287 288
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
289 290 291
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
292
    }                                                                          \
Q
QI JUN 已提交
293
    template <typename DeviceContext, typename T>                              \
294 295 296
    inline void RunBroadCast(const framework::Tensor *x,                       \
                             const framework::Tensor *y, framework::Tensor *z, \
                             const framework::ExecutionContext &ctx, int pre,  \
297 298 299 300 301 302 303
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
304 305 306
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
307
    }                                                                          \
Q
QI JUN 已提交
308
    template <typename DeviceContext, typename T>                              \
309 310 311 312
    inline void RunBroadCast2(const framework::Tensor *x,                      \
                              const framework::Tensor *y,                      \
                              framework::Tensor *z,                            \
                              const framework::ExecutionContext &ctx, int pre, \
313 314 315 316 317 318 319
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
320 321 322
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
323 324 325 326
    }                                                                          \
  }

#define EIGEN_ADD(x, y) ((x) + (y))
327

328 329 330
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
331

332 333 334
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
335

336 337 338
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
339

340 341
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
342 343
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
344 345 346 347
  const T *x_;
  const T *y_;
  const T *out_;
  const T *dout_;
Y
Yu Yang 已提交
348 349 350 351 352 353

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
354
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
355 356 357 358 359
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
360 361
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
362 363 364
};

template <typename T, typename DX_OP, typename DY_OP>
365 366 367
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
385

D
dzhwinter 已提交
386
#ifdef __NVCC__
Y
Yu Yang 已提交
387 388
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
389 390
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
391 392 393
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
394
  T val(0);
Y
Yu Yang 已提交
395 396 397 398 399 400 401

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
C
chengduoZH 已提交
402
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
403 404 405 406 407
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
C
chengduoZH 已提交
408
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
409
    val = paddle::platform::reduceSum(val, tid, h);
Y
Yu Yang 已提交
410
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
411
      dy[j] = val;
Y
Yu Yang 已提交
412 413 414 415 416
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
417 418
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
Y
Yu Yang 已提交
419
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
420
                                       T *dx, T *dy) {
Y
Yu Yang 已提交
421 422
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
C
chengduoZH 已提交
423 424
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, h, w, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
425 426 427 428 429
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
430 431 432
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
457 458
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
459 460 461
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
462
  T val(0);
Y
Yu Yang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
C
chengduoZH 已提交
477
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
478 479 480 481 482 483
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
C
chengduoZH 已提交
484 485
    int h = pre * post;
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
486
    val = paddle::platform::reduceSum(val, tid, h);
C
chengduoZH 已提交
487
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
488
      dy[j] = val;
Y
Yu Yang 已提交
489 490 491 492 493
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
494 495
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
Y
Yu Yang 已提交
496
                                       int pre, int n, int post, DX_OP dx_op,
497
                                       DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
498 499
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
500 501
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
502 503 504 505
}

#endif

506 507
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
508 509 510 511 512
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
513
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
514
#if !defined(_WIN32)
515 516
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
517 518 519 520
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
521 522 523 524 525 526 527 528
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
529 530 531 532 533
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

Y
Yu Yang 已提交
576
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
577 578 579 580 581
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
582
                         DX_OP dx_op, DY_OP dy_op) {
583 584
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
585
  if (x.dims() == y.dims()) {
586 587
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
588
  } else {  // Y is a scalar
589 590 591 592 593 594 595 596 597 598
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
599 600 601 602 603 604
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
605 606
                                 DX_OP dx_op, DY_OP dy_op) {
  if (dy == nullptr) {
607
    const framework::DDim &dx_dims = dout.dims();
608 609 610 611 612
    auto dy_dims = dx_dims;
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  } else {
    if (dout.dims() == dy->dims()) {
613 614
      const framework::DDim &dx_dims = dout.dims();
      const framework::DDim &dy_dims = dy->dims();
615 616 617 618
      ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    } else {  // Y is a scalar
      auto dx_dims = dout.dims();
619
      const framework::DDim &dy_dims = dy->dims();
620 621
      ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
622 623
    }
  }
624
}
Y
Yu Yang 已提交
625

626
// Deprecated
Q
QI JUN 已提交
627
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
628
          typename broadcastfunctor, typename broadcast2functor>
629 630 631 632 633 634 635
void ElementwiseGradCompute(const framework::ExecutionContext &ctx,
                            const framework::Tensor *x,
                            const framework::Tensor *y,
                            const framework::Tensor *out,
                            const framework::Tensor *dout, int axis,
                            framework::Tensor *dx, framework::Tensor *dy) {
  auto &place = *ctx.template device_context<DeviceContext>().eigen_device();
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
654
  trim_trailing_singular_dims(y_dims);
655
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
656 657

  int pre, n, post;
658
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
659 660 661 662 663 664 665 666 667 668 669

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
670

671 672
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
D
dzhwinter 已提交
673

674 675 676 677
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
678
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
679
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
680
  auto x_dims = x->dims();
681 682
  auto y_dims_untrimed = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(),
F
fengjiayi 已提交
683 684
                    "Rank of first input must >= rank of second input.");

685
  if (x_dims == y_dims_untrimed) {
F
fengjiayi 已提交
686 687 688 689
    functor.Run();
    return;
  }

690
  axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis);
F
fengjiayi 已提交
691 692
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
693
  auto y_dims = trim_trailing_singular_dims(y_dims_untrimed);
694
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
F
fengjiayi 已提交
695 696

  int pre, n, post;
697
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
F
fengjiayi 已提交
698 699 700 701 702 703 704 705 706
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
  int j = blockIdx.x;
  int i = threadIdx.x;

  while (i < h) {
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CUDA(cudaStream_t stream, const T *x,
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CUDA(cudaStream_t stream, const T *x,
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);

  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
1016 1017
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
1018 1019 1020
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
C
chengduo 已提交
1021 1022 1023 1024
      dx_[i] = UseIntermediateOut
                   ? dx_op_.UseIntermediateOut(
                         x_[i], y_[i], intermediate_out_[i], out_[i], dout_[i])
                   : dx_op_.Recompute(x_[i], y_[i], out_[i], dout_[i]);
1025 1026
    }
    if (dy_ != nullptr) {
C
chengduo 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
      dy_[i] = UseIntermediateOut
                   ? dy_op_.UseIntermediateOut(
                         x_[i], y_[i], intermediate_out_[i], out_[i], dout_[i])
                   : dy_op_.Recompute(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dintermediate_ != nullptr) {
      dintermediate_[i] =
          UseIntermediateOut
              ? dintermediate_op_.UseIntermediateOut(
                    x_[i], intermediate_out_[i], out_[i], dout_[i])
              : dintermediate_op_.Recompute(x_[i], y_[i], out_[i], dout_[i]);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
1048
  DIntermediate_OP dintermediate_op_;
1049 1050
  T *dx_;
  T *dy_;
C
chengduo 已提交
1051
  T *dintermediate_;
1052 1053 1054
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1055
          typename DIntermediate_OP, bool UseIntermediateOut>
1056 1057 1058 1059 1060
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
1061 1062 1063
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1064 1065 1066 1067
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
  for_range(
C
chengduo 已提交
1068 1069
      FusedElemwiseAndActGradNoBroadcast<T, DX_OP, DY_OP, DIntermediate_OP,
                                         UseIntermediateOut>{
1070 1071
          x->data<T>(), y->data<T>(),
          intermediate_out ? intermediate_out->data<T>() : nullptr,
C
chengduo 已提交
1072
          out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
1073
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1074 1075 1076
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace())});
1077 1078
}

C
chengduo 已提交
1079 1080 1081 1082 1083 1084 1085
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
1101 1102 1103 1104 1105
                    ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
1119 1120 1121 1122 1123
                    ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
                          x[x_idx], intermediate_out[tmp_out_idx], out[offset],
                          dout[offset])
                    : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                 out[offset], dout[i]);
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
1151 1152 1153 1154
    }
  }
}

C
chengduo 已提交
1155 1156 1157 1158 1159 1160 1161
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
1178 1179 1180 1181 1182
                      ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
1196 1197 1198 1199 1200
                      ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            x[x_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                   out[offset], dout[i]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
1228 1229 1230 1231 1232 1233
      }
    }
  }
}

#ifdef __NVCC__
C
chengduo 已提交
1234 1235 1236
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
1237 1238
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
1239 1240
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1241 1242 1243
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
1244
  T val(0), inter_val(0);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  int64_t tmp_out_idx, x_idx, y_idx;

  do {
    int offset = i * w + j;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
1259 1260 1261 1262 1263 1264
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1265 1266 1267 1268 1269 1270 1271 1272

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
1273 1274 1275 1276 1277 1278
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1279 1280 1281 1282 1283 1284
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
1298 1299 1300 1301

    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

C
chengduo 已提交
1302
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
1318 1319 1320 1321 1322 1323 1324 1325
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
1326 1327
}

C
chengduo 已提交
1328 1329 1330 1331 1332 1333 1334
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1335 1336 1337
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
1338
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
1339
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
1340 1341
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
1342 1343
}

C
chengduo 已提交
1344 1345 1346
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
1347 1348
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
1349 1350
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1351 1352 1353
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1354
  T val(0), inter_val(0);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
1373 1374 1375 1376 1377 1378
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1379 1380 1381 1382 1383 1384 1385 1386

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
1387 1388 1389 1390 1391 1392
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1393 1394 1395 1396 1397 1398
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
1412 1413 1414
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
1415 1416
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
1432 1433 1434 1435 1436 1437 1438 1439
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
1440 1441
}

C
chengduo 已提交
1442 1443 1444
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
1445 1446 1447
static void FusedElemwiseAndActGradBroadcast2CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
1448 1449
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
1450 1451 1452
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
1453
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
1454
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
1455 1456
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
1457 1458 1459 1460
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1461
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
1462 1463 1464 1465 1466 1467
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
1468 1469 1470
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
1482 1483
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1484 1485 1486 1487
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1488
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1489
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1490 1491 1492
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1493 1494
#endif
    } else {
C
chengduo 已提交
1495 1496
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1497 1498 1499
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1500
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1501
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1502 1503 1504
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1505 1506 1507 1508
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
1509 1510
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1511 1512 1513 1514 1515
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1516
          dintermediate_op,
1517
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1518 1519 1520
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1521 1522
#endif
    } else {
C
chengduo 已提交
1523 1524
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1525 1526 1527 1528
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1529
          dintermediate_op,
1530
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1531 1532 1533
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1534 1535 1536 1537 1538
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1539 1540
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
1541 1542 1543 1544
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
1545 1546 1547
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1548 1549 1550 1551 1552 1553
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out, "intermediate_out should not be nullptr");
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
1554 1555
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
1556
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
1557
        dintermediate, dx_op, dy_op, dintermediate_op);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1573 1574 1575 1576
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1577 1578
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1579 1580 1581 1582
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out,
C
chengduo 已提交
1597
                   "The save_intermediate_out is opened, "
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
                   "intermediate_out should not be nullptr.");
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
    bool bcast_y = x.dims().size() >= y.dims().size();
    if (x.dims().size() == y.dims().size()) {
      for (int i = 0; i < x.dims().size(); ++i) {
        if (x.dims()[i] < y.dims()[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the shape
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the shape
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
1649 1650
}  // namespace operators
}  // namespace paddle