device_context.cc 22.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24
#include "glog/logging.h"
L
Leo Chen 已提交
25
#include "paddle/fluid/platform/profiler.h"
26

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
86
  VLOG(4) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
87 88
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
89 90
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
91 92
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
93
        place));
D
dzhwinter 已提交
94
  }
95
  return it->second.get().get();
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105 106
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
107
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
108
                   }));
C
chengduozh 已提交
109 110
}

D
dzhwinter 已提交
111 112
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
113 114 115 116 117
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
118
  std::set<Place> set;
Y
Yu Yang 已提交
119 120 121 122 123
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
124
#ifdef PADDLE_WITH_MKLDNN
125
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
126
#else
127
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
128
#endif
Y
Yu Yang 已提交
129
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
130
#ifdef PADDLE_WITH_CUDA
131
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
132
#else
G
GaoWei8 已提交
133 134 135
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
136 137 138
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
139 140
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
141
#else
G
GaoWei8 已提交
142
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
143 144
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
145 146 147 148 149 150 151 152
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
153 154 155 156 157 158 159 160
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
D
dzhwinter 已提交
161 162 163 164 165
#endif
    }
  }
}

166 167 168 169
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
170
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
171 172 173 174 175 176 177
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
178
Place CPUDeviceContext::GetPlace() const { return place_; }
179

180 181 182
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

183 184 185 186 187 188 189 190 191 192
XPUDeviceContext::~XPUDeviceContext() {
  xpu::destroy_context(context_);
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
}
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
209 210 211 212 213 214 215
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

239 240 241 242 243 244 245 246
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
247
  stream_.reset(new stream::NPUStream(place));
248 249 250 251 252 253 254 255
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}

void NPUDeviceContext::Wait() const {
L
Leo Chen 已提交
256
  platform::RecordEvent record_event("NPUDeviceContext/wait");
257
  NPUDeviceGuard guard(place_.device);
258
  VLOG(4) << "NPU context Wait";
259 260 261
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeDevice());
}

262 263
aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

264 265 266 267 268 269 270
Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext* NPUDeviceContext::context() const {
  return const_cast<aclrtContext*>(&context_);
}
#endif

271
#ifdef PADDLE_WITH_CUDA
272

Q
init  
qijun 已提交
273 274 275 276 277 278 279
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
280
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
281 282 283 284 285 286 287 288 289 290 291 292
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
293 294 295
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
296 297 298
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
299
    void* retv = buf->ptr();
S
sneaxiy 已提交
300 301 302 303
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
304
    return retv;
Q
init  
qijun 已提交
305 306
  }

S
sneaxiy 已提交
307 308 309 310 311 312
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
313 314 315

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
316 317 318 319
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
320
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
321 322 323
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
324 325 326 327 328 329
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
330
#ifdef _WIN32
Q
init  
qijun 已提交
331 332
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
333 334 335
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
336
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
337
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
338 339 340 341 342 343
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
344
  CUDAPlace place_;
Q
init  
qijun 已提交
345 346
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
347
  mutable void* scratch_;
Q
init  
qijun 已提交
348
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
349
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
350
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
351 352
};

353 354 355 356 357 358 359 360 361
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

362 363 364 365 366 367 368 369 370 371 372 373
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
374
                         const stream::Priority& priority) {
375 376 377 378 379 380
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
381
  InitCuSolverContext();
382 383 384 385 386 387
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
388
  DestoryCuSolverContext();
389 390
}

391
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
392
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
393 394 395
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
396
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
397
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
398

C
chengduo 已提交
399 400 401
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

402
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
403 404 405
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
406
                          << ", Driver API Version: " << driver_version_ / 1000
407
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
408 409 410
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
411 412 413
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
414
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
415 416 417

  {
    // Check CUDA/CUDNN version compatiblity
418 419 420 421
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
422 423 424 425 426 427 428 429 430 431 432 433
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
434
  default_ctx_.reset(new CUDAContext(place_));
435 436 437 438
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
439 440 441 442 443
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
444 445
}

L
liaogang 已提交
446
Place CUDADeviceContext::GetPlace() const { return place_; }
447

448
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
449

K
Kexin Zhao 已提交
450
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
451
  return compute_capability_;
K
Kexin Zhao 已提交
452 453
}

454
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
455
  return multi_process_ * max_threads_per_mp_;
456 457
}

458 459 460 461 462 463
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

464
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
465
  return context()->EigenDevice().get();
466 467
}

468
bool CUDADeviceContext::tensor_core_available() const {
469
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
470 471
}

472 473 474 475
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

476 477 478
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
479

S
sneaxiy 已提交
480
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
481
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
482
}
483

G
Guo Sheng 已提交
484 485 486 487
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

488 489 490
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
491

C
chengduoZH 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
506
#endif
Q
qijun 已提交
507

T
tensor-tang 已提交
508 509
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
510 511 512
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
513 514
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
534 535
  cur_input_shape_str = input_shape_str;
}
536 537
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
538 539
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
540

541 542
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
543 544 545
  cur_paddle_data_layout = dl;
}

546 547
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
548 549 550
  return cur_paddle_data_layout;
}

551 552 553 554 555 556 557 558 559
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
575
}
576

577
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
578
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
579
  BlobMap* pMap = p_blobmap_.get();
580
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
581
  if (map_it == pMap->end()) {
582 583 584
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
585 586 587 588
  }
  return map_it->second->size();
}

589
void MKLDNNDeviceContext::SetBlob(const std::string& name,
590
                                  BlobPtr_t<void> data) const {
591
  BlobMap* pMap = p_blobmap_.get();
592 593
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
594

595
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
596

597
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
598

599 600
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
601 602 603

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
604
    sBlob = std::make_shared<ShapeBlob>();
605 606
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
607
  } else {
608
    sBlob = map_it->second;
609
  }
T
tensor-tang 已提交
610

611
  // Find KeyBlob for current input shape
612
  auto key_it = sBlob->find(tls().cur_input_shape_str);
613

614
  if (key_it == sBlob->end()) {
615 616
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
617 618
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
619
        sBlob->size() &&
620
        (sBlob->size() >=
621
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
622 623 624 625
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
626 627
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
628
  } else {
629
    pBlob = key_it->second;
630 631
  }

632 633 634 635 636 637 638
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
639
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
640
  // lock will be automatically released when out of scope
641
  return;
T
tensor-tang 已提交
642 643
}

644 645 646 647 648 649 650 651 652 653
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

654
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
655
    const std::string& name) const {
656
  BlobMap* pMap = p_blobmap_.get();
657 658
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
659

660
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
661

662
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
663

664 665
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
666
  if (map_it == pMap->end()) {
667
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
668 669 670 671 672
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
673
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
674
  if (sBlob_it == sBlob->end()) {
675
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
676 677 678 679
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
680 681 682 683

  // Find Blob via name
  auto key_it = pBlob->find(name);

684
  if (key_it == pBlob->end()) {
685
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
686 687
    return nullptr;
  }
688

689
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
690 691
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
692 693 694
}

#endif
Q
qijun 已提交
695
}  // namespace platform
Q
qijun 已提交
696
}  // namespace paddle