extension.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# TODO: define the extention functions
__all__ = [
    #            'add_position_encoding',
    #            'autoincreased_step_counter',
    #            'continuous_value_model',
    #            'filter_by_instag',
    #            'linear_chain_crf',
    #            'merge_selected_rows',
    #            'multiclass_nms',
    #            'polygon_box_transform',
    #            'random_crop',
    'row_conv',
    #            'rpn_target_assign',
    #            'similarity_focus',
    #            'target_assign',
    #            'temporal_shift',
    #            'warpctc',
L
Li Fuchen 已提交
32
    'diag_embed'
33 34
]

L
Li Fuchen 已提交
35 36
import numpy as np
from ...fluid.data_feeder import check_dtype
37
from ...fluid.layer_helper import LayerHelper
L
Li Fuchen 已提交
38 39 40
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layers.tensor import assign
from ...fluid import core, dygraph_utils
41 42 43
from ...fluid.layers.layer_function_generator import templatedoc


L
Li Fuchen 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) 
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions 
    of the returned tensor will be selected.
    The argument ``offset`` determines which diagonal is generated:
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    Args:
        input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
    Returns:
        Variable, the output data type is the same as input data type.
    Examples:
        .. code-block:: python
            import paddle.nn.functional as F
            import paddle.fluid.dygraph as dg
            import numpy as np
            
            diag_embed = np.random.randn(2, 3).astype('float32')
            with dg.guard():
                data1 = F.diag_embed(diag_embed)
                data2 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
    """
    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

    if not isinstance(input, Variable):
        input = assign(input)

    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'diag_embed')

        input_shape = list(input.shape)
        assert (len(input_shape) >= 1,                     \
                "Input must be at least 1-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
                len(input_shape))

        assert (
            np.abs(dim1) <= len(input_shape),
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
            % (-(len(input_shape) + 1), len(input_shape), dim1))

        assert (
            np.abs(dim2) <= len(input_shape),
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
            % (-(len(input_shape) + 1), len(input_shape), dim2))

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
        assert ( dim1_ != dim2_,
               "dim1 and dim2 cannot be the same dimension." \
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2))

    if not in_dygraph_mode():
        __check_input(input, offset, dim1, dim2)
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

    helper.append_op(
        type='diag_embed',
        inputs={'Input': [input]},
        attrs={'offset': offset,
               'dim1': dim1,
               'dim2': dim2},
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
@templatedoc()
def row_conv(input, weight, act=None):
    """
    ${comment}

    Args:
        input (Variable):  the input(X) is a LodTensor or tensor, LodTensor(X) 
            supports variable  time-length input sequences. The underlying 
            tensor in this LoDTensor is a matrix with shape (T, D), where 
            T is the total time steps in this mini-batch and D is the input 
            data dimension. 
            If the input is a padded minibatch, the shape of the input is 
            (N, T, D), N is batch size, T is the max time steps in the batch,
             D is the input data dimension.
        weight (Variable): The weight. A Tensor with shape 
            (future_context_size + 1, D), where future_context_size is the 
            context size of the RowConv operator.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        ${out_comment}.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            batch_size = 4
            time_steps = 8
            feature_size = 6
            context_size = 4
            x = np.random.randn(batch_size, time_steps, feature_size).astype(np.float32)
            weight = np.random.randn(context_size + 1, feature_size).astype(np.float32)

            place = fluid.CPUPlace()
            with dg.guard(place):
                x_var = dg.to_variable(x)
                w_var = dg.to_variable(weight)
                y_var = F.row_conv(x_var, w_var)
                y_np = y_var.numpy()

            print(y_np.shape)

            # (4, 8, 6)
    """

    if in_dygraph_mode():
        pre_act = core.ops.row_conv(input, weight)
        out = dygraph_utils._append_activation_in_dygraph(pre_act, act)
        return out
    else:
        helper = LayerHelper('row_conv', **locals())
        dtype = helper.input_dtype()

        inputs = {'X': [input], 'Filter': [weight]}
        pre_act = helper.create_variable_for_type_inference(dtype)
        outputs = {'Out': [pre_act]}
        helper.append_op(type='row_conv', inputs=inputs, outputs=outputs)
        out = helper.append_activation(pre_act)
    return out