fused_gemm_epilogue_op.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/fused_gemm_epilogue.h"
19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class FusedGemmEpilogueOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueOp");
31 32 33 34
    OP_INOUT_CHECK(
        ctx->HasInput("Bias"), "Output", "Bias", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FusedGemmEpilogueOp");
35 36 37 38 39 40 41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto bias_dims = ctx->GetInputDim("Bias");

    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

    PADDLE_ENFORCE_EQ(
44 45
        y_dims.size(),
        2,
46 47 48 49 50 51
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
52 53
        x_dims.size(),
        2,
54 55 56 57 58 59
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
60 61
        bias_dims.size(),
        1,
62 63 64 65 66
        platform::errors::InvalidArgument(
            "The Input tensor bias's dimension of FusedGemmEpilogueOp "
            " should be == 1, but got %d.",
            bias_dims.size()));

67 68
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      trans_y ? y_dims[0] : y_dims[1],
69 70 71 72
                      platform::errors::InvalidArgument(
                          "The Input tensor bias's dimension 0"
                          " should be == Y[-1], but got bias's shape = [%s] "
                          "and Y's shape = [%s]",
73 74
                          bias_dims,
                          y_dims));
75 76 77 78 79 80 81 82

    auto x_mat_dims =
        phi::flatten_to_2d(x_dims, trans_x ? 1 : x_dims.size() - 1);

    int K_from_x = trans_x ? x_mat_dims[0] : x_mat_dims[1];
    int K_from_y = trans_y ? y_dims[1] : y_dims[0];

    PADDLE_ENFORCE_EQ(
83 84
        K_from_x,
        K_from_y,
85 86 87
        platform::errors::InvalidArgument(
            "The last dimension of X should be equal with Y's first dimension."
            "But received X[-1] = [%d], Y[0] = [%d].",
88 89
            K_from_x,
            K_from_y));
90 91 92 93 94 95 96 97 98 99 100

    auto activation = ctx->Attrs().Get<std::string>("activation");
    if (activation == "none" && ctx->HasOutput("ReserveSpace")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The ReserveSpace would not be used when activation = \"none\""));
    }

    // cublasLt's restriction for auxiliary.
    if (ctx->HasOutput("ReserveSpace") && activation != "none") {
      int min_size_of_n = activation == "relu" ? 128 : 8;
      int N_size = trans_y ? y_dims[0] : y_dims[1];
101 102
      PADDLE_ENFORCE_EQ(N_size % min_size_of_n,
                        0,
103 104 105 106
                        platform::errors::InvalidArgument(
                            "The output dimension N (X(MxK) * Y(KxN) = C(MxN)) "
                            "should be multiple of %d when auxiliary_key given "
                            "and activation=%s, but got N = %d.",
107 108 109
                            min_size_of_n,
                            activation,
                            N_size));
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    }

    std::vector<int64_t> out_dims;
    out_dims.reserve(static_cast<size_t>(x_dims.size()));
    if (trans_x) {
      for (int i = 1; i < x_dims.size(); ++i) out_dims.push_back(x_dims[i]);
    } else {
      for (int i = 0; i < x_dims.size() - 1; ++i) out_dims.push_back(x_dims[i]);
    }

    if (trans_y) {
      out_dims.push_back(y_dims[0]);
    } else {
      out_dims.push_back(y_dims[1]);
    }

    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
127 128

    if (ctx->HasOutput("ReserveSpace")) {
129 130 131 132
      ctx->SetOutputDim("ReserveSpace", phi::make_ddim(out_dims));
    }
  }

133
  phi::KernelKey GetExpectedKernelType(
134 135
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
136
    return phi::KernelKey(data_type, ctx.GetPlace());
137 138 139 140 141 142 143 144 145 146 147 148
  }
};

class FusedGemmEpilogueOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor X of Out = Act((X * Y) + Bias).");
    AddInput("Y", "The input tensor Y of Out = Act((X * Y) + Bias).");
    AddInput("Bias", "The input tensor bias of Out = Act((X * Y) + Bias).");

    AddOutput("Out", "The output tensor Out of Out = Act((X * Y) + Bias).");
    AddOutput("ReserveSpace",
149 150 151
              R"DOC(Reserve GPU space to place
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue op. If not given (empty string), the
152 153 154 155 156 157
        auxiliary mode would not be enable.)DOC")
        .AsDispensable()
        .AsExtra();

    AddAttr<bool>(
        "trans_x",
158 159 160
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
161 162 163 164
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
165 166 167
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
168 169 170 171 172
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);

    AddAttr<std::string>(
        "activation",
173 174
        R"DOC((string, default none), The activation function. It could be
    one of {none, relu, gelu}. When none is given, Act would be null
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogue Operator
This operator is used to perform Activeation(Elementwise_add(Matmul(X, Y), bias)).
It is equal to paddle.nn.Linear + Activation (None, ReLU or GeLU).

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

class FusedGemmEpilogueGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
196 197
    OP_INOUT_CHECK(
        ctx->HasInput("DOut"), "Input", "DOut", "FusedGemmEpilogueGradOp");
198 199 200 201 202 203 204 205
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasOutput("DY"), "Output", "DY", "FusedGemmEpilogueOp");

    auto dout_dims = ctx->GetInputDim("DOut");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

206 207 208
    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

209
    PADDLE_ENFORCE_GE(
210 211
        dout_dims.size(),
        2,
212 213 214 215 216 217
        platform::errors::InvalidArgument(
            "The Input tensor DOut's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            dout_dims.size()));

    PADDLE_ENFORCE_EQ(
218 219
        y_dims.size(),
        2,
220 221 222 223 224 225
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueGradOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
226 227
        x_dims.size(),
        2,
228 229 230 231 232 233
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
234 235
        dout_dims.size(),
        x_dims.size(),
236 237 238 239
        platform::errors::InvalidArgument(
            "The Input tensor DOut's and X's dimension of "
            "FusedGemmEpilogueGradOp "
            " should be the same, but got DOut's dim = %d and X's = %d.",
240 241
            dout_dims.size(),
            x_dims.size()));
242 243 244 245 246 247

    auto dout_mat_dims = phi::flatten_to_2d(dout_dims, dout_dims.size() - 1);

    auto x_mat_dims = phi::flatten_to_2d(x_dims, x_dims.size() - 1);

    PADDLE_ENFORCE_EQ(
248 249
        dout_mat_dims[1],
        trans_y ? y_dims[0] : y_dims[1],
250 251 252
        platform::errors::InvalidArgument(
            "The last dimension of DOut should be equal with Y's last"
            "dimension. But received DOut[-1] = [%d], Y[1] = [%d].",
253 254
            dout_mat_dims[1],
            y_dims[1]));
255 256

    PADDLE_ENFORCE_EQ(
257 258
        dout_mat_dims[0],
        trans_x ? x_mat_dims[1] : x_mat_dims[0],
259 260 261
        platform::errors::InvalidArgument(
            "The first dimension of DOut should be equal with X's first"
            "dimension. But received DOut[0] = [%d], Y[0] = [%d].",
262 263
            dout_mat_dims[0],
            x_mat_dims[0]));
264 265 266

    auto activation_grad = ctx->Attrs().Get<std::string>("activation_grad");
    if (activation_grad != "none" && !ctx->HasInput("ReserveSpace")) {
267 268
      PADDLE_ENFORCE_EQ(true,
                        false,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                        platform::errors::InvalidArgument(
                            "The ReserveSpace should not be empty. "
                            "when activation_grad == {relu_grad, gelu_grad}."));
    }

    if (ctx->HasOutput("DX")) {
      std::vector<int64_t> dx_dims;
      dx_dims.reserve(static_cast<size_t>(x_dims.size()));
      for (int i = 0; i < x_dims.size(); ++i) {
        dx_dims.push_back(x_dims[i]);
      }
      ctx->SetOutputDim("DX", phi::make_ddim(dx_dims));
    }

    std::vector<int64_t> dy_dims(y_dims.Get(), y_dims.Get() + y_dims.size());
    ctx->SetOutputDim("DY", phi::make_ddim(dy_dims));

    if (ctx->HasOutput("DBias")) {
      std::vector<int64_t> dbias_dims;
288
      dbias_dims.push_back(trans_y ? y_dims[0] : y_dims[1]);
289 290 291 292
      ctx->SetOutputDim("DBias", phi::make_ddim(dbias_dims));
    }
  }

293
  phi::KernelKey GetExpectedKernelType(
294 295
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
296
    return phi::KernelKey(data_type, ctx.GetPlace());
297 298 299 300 301 302 303 304 305 306 307
  }
};

class FusedGemmEpilogueGradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("DOut",
             "The input grad tensor to Out of Out = (Act(X) * Y) + bias");
    AddInput("X", "The input tensor X of Out = (Act(X) * Y) + bias");
    AddInput("Y", "The input tensor Y of Out = (Act(X) * Y) + bias");
    AddInput("ReserveSpace",
308 309 310
             R"DOC(A GPU space to fetch
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue_grad op. If not given (empty string), the
311 312 313 314 315 316 317 318 319 320
        auxiliary mode would not be enable.)DOC")
        .AsDispensable();

    AddOutput("DX", "The output grad tensor to X of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
    AddOutput("DY",
              "The output grad tensor to Y of Out = (Act(X) * Y) + bias.");
    AddOutput("DBias",
              "The output grad tensor to bias of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
321 322
    AddAttr<bool>(
        "trans_x",
323 324 325
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
326 327 328 329
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
330 331 332
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
333 334
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);
335 336 337

    AddAttr<std::string>(
        "activation_grad",
338 339
        R"DOC((string, default none), The backward activation function. It could be
    one of {none, relu_grad, gelu_grad}. When none is given, The backward Act would
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    be null operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogueGrad Operator
This operator is used to perform backward of Elementwise_add(Matmul(Activeation(X), Y), bias).
It is equal to Activation (None, ReLU or GeLU) + paddle.nn.Linear.

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

355 356 357 358 359 360 361 362 363 364 365 366
template <typename T>
class FusedGemmEpilogueOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    const auto& act_type = this->template Attr<std::string>("activation");

    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
367
    if (act_type != "none") {
368
      op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
369
    }
370 371 372 373 374 375 376 377 378 379
    op->SetInput("DOut", this->OutputGrad("Out"));

    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DY", this->InputGrad("Y"));
    op->SetOutput("DBias", this->InputGrad("Bias"));

    op->SetAttrMap(this->Attrs());
  }
};

380 381 382 383
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
384
REGISTER_OPERATOR(
385 386
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueOp,
387 388 389
    ops::FusedGemmEpilogueOpMaker,
    ops::FusedGemmEpilogueOpGradMaker<paddle::framework::OpDesc>,
    ops::FusedGemmEpilogueOpGradMaker<paddle::imperative::OpBase>);
390 391
REGISTER_OPERATOR(fused_gemm_epilogue_grad,
                  ops::FusedGemmEpilogueGradOp,
392
                  ops::FusedGemmEpilogueGradOpMaker);