data_sources.py 6.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Data Sources are helpers to define paddle training data or testing data.
There are several data attributes will be used by paddle:

- Data ProviderType\: such as Python, Protobuf
- Data File list\: a single file that contains all data file paths
"""
from paddle.trainer.config_parser import *
from .utils import deprecated

try:
    import cPickle as pickle
except ImportError:
    import pickle

__all__ = ['define_py_data_sources',
           'define_py_data_sources2']


def define_py_data_source(file_list, cls, module,
                          obj, args=None, async=False,
                          data_cls=PyData):
    """
    Define a python data source.

    For example, the simplest usage in trainer_config.py as follow:

    ..  code-block:: python

        define_py_data_source("train.list", TrainData, "data_provider", "process")

    Or. if you want to pass arguments from trainer_config to data_provider.py, then

    ..  code-block:: python

        define_py_data_source("train.list", TrainData, "data_provider", "process",
                              args={"dictionary": dict_name})

    The related data provider can refer to 
    `here <data_provider/python_case.html#quick-start>`__.

    :param data_cls:
    :param file_list: file list name.
    :type file_list: basestring
    :param cls: Train or Test Class.
    :type cls: TrainData or TestData
    :param module: python module name.
    :type module: basestring
    :param obj: python object name. May be a function name if using
                PyDataProviderWrapper.
    :type obj: basestring
    :param args: The best practice is using dict to pass arguments into 
                 DataProvider, and use :code:`@init_hook_wrapper` to 
                 receive arguments.
    :type args: string or picklable object
    :param async: Load Data asynchronously or not.
    :type async: bool
    :return: None
    :rtype: None
    """
    if isinstance(file_list, list):
        file_list_name = 'train.list'
        if isinstance(cls, TestData):
            file_list_name = 'test.list'
        with open(file_list_name, 'r') as f:
            f.writelines(file_list)
        file_list = file_list_name

    if not isinstance(args, basestring) and args is not None:
        args = pickle.dumps(args, 0)

    if data_cls is None:
        def py_data2(files, load_data_module, load_data_object, load_data_args,
                    **kwargs):
            data = DataBase()
            data.type = 'py2'
            data.files = files
            data.load_data_module = load_data_module
            data.load_data_object = load_data_object
            data.load_data_args = load_data_args
            return data
        data_cls = py_data2

    cls(data_cls(files=file_list,
                 load_data_module=module,
                 load_data_object=obj,
                 load_data_args=args,
                 async_load_data=async))


def define_py_data_sources(train_list, test_list, module, obj, args=None,
                           train_async=False, data_cls=PyData):
    """
    Define python Train/Test data sources in one method. If train/test use
    the same Data Provider configuration, module/obj/args contain one argument,
    otherwise contain a list or tuple of arguments. For example\:

    ..  code-block:: python

        define_py_data_sources("train.list", "test.list", module="data_provider"
                               obj="process", args={"dictionary": dict_name})

    Or.

    ..  code-block:: python

        define_py_data_sources("train.list", "test.list", module="data_provider"
                               obj=["process_train", "process_test"],
                               args=[{"dictionary": dict_train}, {"dictionary": dict_test}])

    The related data provider can refer to 
    `here <data_provider/python_case.html#sequence-example>`__.

    :param data_cls:
    :param train_list: Train list name.
    :type train_list: basestring
    :param test_list: Test list name.
    :type test_list: basestring
    :param module: python module name. If train and test is different, then
                   pass a tuple or list to this argument.
    :type module: basestring or tuple or list
    :param obj: python object name. May be a function name if using
                PyDataProviderWrapper. If train and test is different, then pass
                a tuple or list to this argument.
    :type obj: basestring or tuple or list
    :param args: The best practice is using dict() to pass arguments into
                 DataProvider, and use :code:`@init_hook_wrapper` to receive 
                 arguments. If train and test is different, then pass a tuple 
                 or list to this argument.
    :type args: string or picklable object or list or tuple.
    :param train_async: Is training data load asynchronously or not.
    :type train_async: bool
    :return: None
    :rtype: None
    """

    def __is_splitable__(o):
        return (isinstance(o, list) or isinstance(o, tuple)
                ) and hasattr(o, '__len__') and len(o) == 2

    assert train_list is not None or test_list is not None
    assert module is not None and obj is not None

    test_module = module
    train_module = module
    if __is_splitable__(module):
        train_module, test_module = module

    test_obj = obj
    train_obj = obj
    if __is_splitable__(obj):
        train_module, test_module = module

    if args is None:
        args = ""

    train_args = args
    test_args = args
    if __is_splitable__(args):
        train_args, test_args = args

    if train_list is not None:
        define_py_data_source(train_list, TrainData, train_module, train_obj,
                              train_args, train_async, data_cls)

    if test_list is not None:
        define_py_data_source(test_list, TestData, test_module, test_obj,
                              test_args, False, data_cls)


def define_py_data_sources2(train_list, test_list, module, obj, args=None):
    define_py_data_sources(train_list=train_list,
                           test_list=test_list,
                           module=module,
                           obj=obj,
                           args=args,
                           data_cls=None)