pool_op.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31 32 33 34 35 36 37
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

  std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39 40 41 42 43

  if (ctx->Attrs().Get<bool>("globalPooling")) {
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
    for (size_t i = 0; i < ksize.size(); ++i)
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
44
  }
45 46 47 48 49 50 51 52 53 54 55 56

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
57
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
73
      "(Tensor) The input tensor of pooling operator. "
74 75 76
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of feature.");
  AddOutput("Out",
C
chengduoZH 已提交
77
            "(Tensor) The output tensor of pooling operator."
78 79 80 81 82 83 84 85 86 87 88 89
            "The format of output tensor is also NCHW."
            "Where N is batch size, C is "
            "the number of channels, H and W is the height and "
            "width of feature.");

  AddAttr<std::string>("poolingType",
                       "PoolingType of pooling operator."
                       "Str constant equal to 'max' or 'avg'.")
      .InEnum({"max", "avg"});

  AddAttr<std::vector<int>>(
      "ksize",
C
chengduoZH 已提交
90
      "The pooling window size(height, width) of pooling operator."
91 92 93 94 95 96 97 98 99 100 101
      "If globalPooling = true, ksize is ignored and need not be "
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
                      // TypedAttrChecker don't support vector type.)
  AddAttr<bool>(
      "globalPooling",
      "Whether to use the globalPooling."
      "Bool constant equal to false or true."
      "Default false."
      "If globalPooling = true, ksize is ignored and need not be specified.")
      .SetDefault(false);
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
102
                            "The strides(height, width) of pooling window."
103 104 105 106
                            "Default {1,1}.")
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
                            // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
107
                            "The zero padding(height, width) size on both sides"
108 109 110 111 112
                            "Default {0,0}.")
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
                            // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
C
chengduoZH 已提交
113
The pooling2d operation calculates the output based on
114
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
115 116 117 118
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
119 120 121 122 123 124 125 126 127 128 129
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
       Mask shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
130
)DOC");
131 132 133 134 135 136 137
}

Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
138
      "(Tensor) The input tensor of pooling operator. "
139 140 141 142
      "The format of input tensor is NCDHW. Where N is batch size, C is "
      "the number of channels, D, H and W is the depth, height and width of "
      "feature.");
  AddOutput("Out",
C
chengduoZH 已提交
143
            "(Tensor) The output tensor of pooling operator."
144 145 146 147 148 149 150 151 152 153 154 155
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
            "the number of channels, D, H and W is the depth, height and "
            "width of feature.");

  AddAttr<std::string>("poolingType",
                       "PoolingType of pooling operator."
                       "Str constant equal to 'max' or 'avg'.")
      .InEnum({"max", "avg"});

  AddAttr<std::vector<int>>(
      "ksize",
C
chengduoZH 已提交
156
      "The pooling window size(depth, height, width) of pooling operator."
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      "If globalPooling = true, ksize is ignored and need not be "
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
                      // TypedAttrChecker don't support vector type.)
  AddAttr<bool>(
      "globalPooling",
      "Whether to use the globalPooling."
      "Bool constant equal to false or true."
      "Default false."
      "If globalPooling = true, ksize is ignored and need not be specified.")
      .SetDefault(false);
  AddAttr<std::vector<int>>("strides",
                            "Strides(depth, height, width) of pooling operator."
                            "Default {1,1,1}.")
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
      "Paddings(depth, height, width) of pooling operator."
      "Default {0,0,0}.")
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
C
chengduoZH 已提交
180
The pooling3d operation calculates the output based on
181
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
182 183 184 185
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
186 187 188 189 190 191 192 193 194 195 196 197
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
       Mask shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
198
)DOC");
199
}
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);