compare_kernel.cc 4.7 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/compare_kernel.h"

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
20
#include "paddle/phi/kernels/impl/compare_kernel_impl.h"
F
From00 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

namespace phi {

template <typename T,
          typename Context,
          typename Functor,
          typename InverseFunctor>
inline void CompareKernelImpl(const Context& ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              int axis,
                              DenseTensor* out) {
  ctx.template Alloc<bool>(out);
  if (x.dims().size() >= y.dims().size()) {
    funcs::ElementwiseCompute<Functor, T, bool>(
        ctx, x, y, axis, Functor(), out);
  } else {
    funcs::ElementwiseCompute<InverseFunctor, T, bool>(
        ctx, x, y, axis, InverseFunctor(), out);
  }
}

template <typename T, typename Context, typename Functor>
inline void CompareAllKernelImpl(const Context& ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 DenseTensor* out) {
  bool* out_data = ctx.template Alloc<bool>(out);

  if (x.dims() != y.dims()) {
    out_data[0] = false;
  } else {
    DenseTensor tmp;
    tmp.Resize(x.dims());
    ctx.template Alloc<bool>(&tmp);

    if (x.numel() == 1 && y.numel() == 1) {
      bool* tmp_data = tmp.data<bool>();
      tmp_data[0] = Functor()(x.data<T>()[0], y.data<T>()[0]);
    } else {
      funcs::ElementwiseCompute<Functor, T, bool>(
          ctx, x, y, 0, Functor(), &tmp);
    }
    auto tmp_flat = EigenVector<bool>::Flatten(tmp);
    auto out_es = EigenScalar<bool>::From(*out);
    auto& place = *ctx.eigen_device();
    auto reduce_dim = Eigen::array<int, 1>({{0}});
    out_es.device(place) = tmp_flat.all(reduce_dim);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(less_than,
                   CPU,
                   ALL_LAYOUT,
                   phi::LessThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
83 84
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
85 86 87 88 89 90 91 92 93
PD_REGISTER_KERNEL(less_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::LessEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
94 95
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
96 97 98 99 100 101 102 103 104
PD_REGISTER_KERNEL(greater_than,
                   CPU,
                   ALL_LAYOUT,
                   phi::GreaterThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
105 106
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
107 108 109 110 111 112 113 114 115
PD_REGISTER_KERNEL(greater_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::GreaterEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
116 117
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
118 119 120 121 122 123 124 125 126
PD_REGISTER_KERNEL(equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::EqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
127 128
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
129 130 131 132 133 134 135 136 137
PD_REGISTER_KERNEL(not_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::NotEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
138 139
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
140 141 142 143 144 145 146 147 148 149

PD_REGISTER_KERNEL(equal_all,
                   CPU,
                   ALL_LAYOUT,
                   phi::EqualAllKernel,
                   bool,
                   int,
                   int64_t,
                   float,
                   double) {}