memcpy_d2h_op.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/memcpy_d2h_op.h"

#include <string>

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

class MemcpyD2HOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::SELECTED_ROWS ||
        type == framework::proto::VarType::LOD_TENSOR) {
      ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
      if (type == framework::proto::VarType::LOD_TENSOR) {
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class MemcpyD2HInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType("X", "Out");
  }
};

class MemcpyD2HKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
    if (x == nullptr) {
      return;
    }
    PADDLE_ENFORCE_EQ(ctx.HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of memcpy_d2h_op is not found."));
    auto *out = ctx.OutputVar("Out");
    // Get dev_ctx from ExecutionContext, it's D2H stream
    auto &dev_ctx = ctx.device_context();
    auto dst_place_type = ctx.Attr<int>("dst_place_type");
    framework::VisitVarType(*x, MemcpyD2HFunctor(out, dev_ctx, dst_place_type));
  }
};

class MemcpyD2HOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(LoDTensor) The input variable ");
    AddOutput("Out",
              "(LoDTensor) The type of output "
              "is the same as input X.");
    AddAttr<int>(
        "dst_place_type",
        "Determine the dst place of tensor copy. "
        "By Now it ONLY support NPUPlace/CUDAPlace <-> CUDAPinnedPlace/CPU"
        "Other place type is Unimplemented and will cause ERROR."
        "0: dst is on CPUPlace. "
        "1: dst is on CUDAPinnedPlace. ");
    AddComment(R"DOC(
    MemcpyD2H Operator.
    By now, it ONLY supports the memcopy between NPUPlace/CUDAPlace <-> CUDAPinnedPlace/CPU.
    You would have to update it if you want other more capacities.
Out = X,  when type in [LoDTensor]
raise error if the type is not listed above.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
    memcpy_d2h, ops::MemcpyD2HOp, ops::MemcpyD2HOpProtoMaker,
    ops::MemcpyD2HInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double,
                               ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel,
                               int64_t, ops::MemcpyD2HKernel, bool,
                               ops::MemcpyD2HKernel, plat::float16,
                               ops::MemcpyD2HKernel);

134
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
135 136 137 138 139 140 141 142 143 144 145 146 147 148
REGISTER_OP_CUDA_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double,
                                ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel,
                                int64_t, ops::MemcpyD2HKernel, bool,
                                ops::MemcpyD2HKernel, plat::float16,
                                ops::MemcpyD2HKernel);
#endif

#ifdef PADDLE_WITH_ASCEND_CL
REGISTER_OP_NPU_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double,
                               ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel,
                               int64_t, ops::MemcpyD2HKernel, bool,
                               ops::MemcpyD2HKernel, plat::float16,
                               ops::MemcpyD2HKernel);
#endif