test_merged_momentum_op.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
from paddle.fluid.layer_helper import LayerHelper
from collections import OrderedDict


def run_momentum_op(params,
                    grads,
                    velocitys,
                    master_params,
                    learning_rate,
                    place,
                    multi_precision,
                    mu=0.9,
                    rescale_grad=0.01,
                    use_merged=False):
    assert len(params) == len(grads)
    assert len(params) == len(velocitys)
    if multi_precision:
        assert len(params) == len(master_params)
    op_type = 'merged_momentum' if use_merged else 'momentum'
    main = paddle.static.Program()
    startup = paddle.static.Program()
    with paddle.static.program_guard(main, startup):
        helper = LayerHelper(op_type, **locals())
        attrs = {
            'mu': mu,
            'multi_precision': multi_precision,
            'rescale_grad': rescale_grad,
        }

        param_vars = [
            helper.create_variable(
                persistable=True, shape=p.shape, dtype=p.dtype) for p in params
        ]
        grad_vars = [
            helper.create_variable(
                shape=g.shape, dtype=g.dtype) for g in grads
        ]
        velocity_vars = [
            helper.create_variable(
                persistable=True, shape=v.shape, dtype=v.dtype)
            for v in velocitys
        ]
        lr_var = helper.create_variable(
            persistable=True,
            shape=learning_rate.shape,
            dtype=learning_rate.dtype)

        feed_dict = OrderedDict()

        feed_dict.update(
            OrderedDict([(p_var.name, p_val)
                         for p_var, p_val in zip(param_vars, params)]))
        feed_dict.update(
            OrderedDict([(v_var.name, v_val)
                         for v_var, v_val in zip(velocity_vars, velocitys)]))
        fetch_list = list(feed_dict.keys())

        feed_dict.update(
            OrderedDict([(g_var.name, g_val)
                         for g_var, g_val in zip(grad_vars, grads)]))
        feed_dict.update({lr_var.name: learning_rate})

        if multi_precision:
            master_param_vars = [
                helper.create_variable(
                    persistable=True, shape=p.shape, dtype=p.dtype)
                for p in master_params
            ]
            feed_dict.update(
                OrderedDict([(mp_var.name, mp_val)
                             for mp_var, mp_val in zip(master_param_vars,
                                                       master_params)]))
            # CPUPlace does not use MasterParam
            if isinstance(place, paddle.CUDAPlace):
                fetch_list = fetch_list + [
                    mp_var.name for mp_var in master_param_vars
                ]
        else:
            master_param_vars = None

        if not use_merged:
            for i, (p, g,
                    v) in enumerate(zip(param_vars, grad_vars, velocity_vars)):
                inputs = {
                    'Param': p,
                    'Grad': g,
                    'Velocity': v,
                    'LearningRate': lr_var,
                }
                outputs = {'ParamOut': p, 'VelocityOut': v}
                if multi_precision:
                    inputs['MasterParam'] = master_param_vars[i]
                    outputs['MasterParamOut'] = master_param_vars[i]
                helper.append_op(
                    type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        else:
            inputs = {
                'Param': param_vars,
                'Grad': grad_vars,
                'Velocity': velocity_vars,
                'LearningRate': lr_var,
            }
            outputs = {'ParamOut': param_vars, 'VelocityOut': velocity_vars}
            if multi_precision:
                inputs['MasterParam'] = master_param_vars
                outputs['MasterParamOut'] = master_param_vars
            helper.append_op(
                type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)

    exe = paddle.static.Executor(place)
    with paddle.static.scope_guard(paddle.static.Scope()):
        exe.run(startup)
        return exe.run(main, feed=feed_dict, fetch_list=fetch_list)


class TestMergedMomentum(unittest.TestCase):
    def setUp(self):
        paddle.enable_static()
        self.shapes = [[3, 4], [2, 7], [5, 6], [7, 8]]
        self.seed = 10

    def gen_rand_data(self, shapes, dtype):
        return [np.random.random(s).astype(dtype) for s in shapes]

    def prepare_data(self, shapes, multi_precision, seed, place):
        np.random.seed(seed)
        mp_dtype = np.float32
        dtype = np.float16 if multi_precision and isinstance(
            place, paddle.CUDAPlace) else np.float32
        params = self.gen_rand_data(shapes, dtype)
        grads = self.gen_rand_data(shapes, dtype)
        velocitys = self.gen_rand_data(shapes, mp_dtype)
        learning_rate = self.gen_rand_data([[1]], mp_dtype)[0]
        if multi_precision:
            master_params = [p.astype(mp_dtype) for p in params]
        else:
            master_params = None
        return params, grads, velocitys, master_params, learning_rate

    def check_with_place(self, place, multi_precision):
        params, grads, velocitys, master_params, learning_rate = self.prepare_data(
            self.shapes, multi_precision, self.seed, place)

        def run_op(use_merged):
            # FIXME(zengjinle): CPU Momentum Op does not support rescale_grad 
            rescale_grad = 1.0 if isinstance(place, paddle.CPUPlace) else 0.01
            return run_momentum_op(
                params,
                grads,
                velocitys,
                master_params,
                learning_rate,
                place,
                multi_precision,
                rescale_grad=rescale_grad,
                use_merged=use_merged)

        outs1 = run_op(True)
        outs2 = run_op(False)
        self.assertEqual(len(outs1), len(outs2))
        for i, (out1, out2) in enumerate(zip(outs1, outs2)):
            if isinstance(place, paddle.CUDAPlace):
                self.assertTrue(np.array_equal(out1, out2))
            else:
                self.assertTrue(np.allclose(out1, out2, atol=1e-7))

    def get_places(self):
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        return places

    def test_main(self):
        for multi_precision in [False, True]:
            for place in self.get_places():
                self.check_with_place(place, multi_precision)


if __name__ == "__main__":
    unittest.main()