lars_momentum_op.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/lars_momentum_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class LarsMomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInputs("Param"), "Input", "Param", "LarsMomentum");
    OP_INOUT_CHECK(ctx->HasInputs("Grad"), "Input", "Grad", "LarsMomentum");
    OP_INOUT_CHECK(ctx->HasInputs("Velocity"), "Input", "Velocity",
                   "LarsMomentum");
    OP_INOUT_CHECK(ctx->HasInputs("LearningRate"), "Input", "LearningRate",
                   "LarsMomentum");
    OP_INOUT_CHECK(ctx->HasOutputs("ParamOut"), "Output", "ParamOut",
                   "LarsMomentum");
    OP_INOUT_CHECK(ctx->HasOutputs("VelocityOut"), "Output", "VelocityOut",
                   "LarsMomentum");
    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Param").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the received is %s",
            ctx->GetInputsVarType("Param").front()));

    auto lr_dims = ctx->GetInputsDim("LearningRate");
    auto grad_dim = ctx->GetInputsDim("Grad");
    auto param_dim = ctx->GetInputsDim("Param");
    auto velocity_dim = ctx->GetInputsDim("Velocity");
    auto lars_weight_decays =
        ctx->Attrs().Get<std::vector<float>>("lars_weight_decay");
    auto multi_precision = ctx->Attrs().Get<bool>("multi_precision");

    PADDLE_ENFORCE_EQ(
        param_dim.size(), grad_dim.size(),
        platform::errors::InvalidArgument(
            "Input(Param) and Input(Grad) of LarsMomentumOp should have "
            "same quantity. But number of Param is [%d] and Grad is [%d].",
            param_dim.size(), grad_dim.size()));
    PADDLE_ENFORCE_EQ(
        param_dim.size(), velocity_dim.size(),
        platform::errors::InvalidArgument(
            "Input(Param) and Input(Velocity) of LarsMomentumOp should "
            "have same quantity. But number of Param is [%d] and Velocity "
            "is [%d].",
            param_dim.size(), velocity_dim.size()));
    PADDLE_ENFORCE_EQ(
        lars_weight_decays.size(), grad_dim.size(),
        platform::errors::InvalidArgument(
            "Attr(Lars_weight_decay) and "
            "Input(Grad) of LarsMomentumOp should have same quantity. "
            "But number of Lars_weight_decay is [%d] and Grad is [%d].",
            lars_weight_decays.size(), grad_dim.size()));

    if (multi_precision) {
      OP_INOUT_CHECK(ctx->HasInputs("MasterParam"), "Input", "MasterParam",
                     "LarsMomentumMultiPrecision");
      OP_INOUT_CHECK(ctx->HasOutputs("MasterParamOut"), "Output",
                     "MasterParamOut", "LarsMomentumMultiPrecision");
    }
    for (size_t i = 0; i < lr_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(framework::product(lr_dims[i]), 1,
                        platform::errors::InvalidArgument(
                            "Learning_rate should be a scalar. But Received "
                            "LearningRate's dim [%s]",
                            framework::product(lr_dims[i])));
    }

    for (size_t i = 0; i < param_dim.size(); ++i) {
      PADDLE_ENFORCE_EQ(ctx->GetInputsVarType("Grad")[i],
                        framework::proto::VarType::LOD_TENSOR,
                        platform::errors::InvalidArgument(
                            "The Var(%s)'s type should be LoDTensor, "
                            "but the received is %s",
                            ctx->Inputs("Grad")[i].front(),
                            ctx->GetInputsVarType("Grad")[i]));
      PADDLE_ENFORCE_EQ(
          param_dim[i], grad_dim[i],
          platform::errors::InvalidArgument(
              "Input(Param) and Input(Grad) input of LarsMomentumOp shall "
              "have same dimension. But Param`s dim is [%s] and Grad's dim "
              "is [%s].",
              param_dim[i], grad_dim[i]));
      PADDLE_ENFORCE_EQ(
          param_dim[i], velocity_dim[i],
          platform::errors::InvalidArgument(
              "Input(Param) and Input(Velocity) of LarsMomentumOp shall have "
              "same dimension. But Param dim [%s] differs with Velocity dim "
              "[%s].",
              param_dim[i], velocity_dim[i]));
    }
    ctx->SetOutputsDim("ParamOut", param_dim);
    ctx->SetOutputsDim("VelocityOut", param_dim);
    if (ctx->HasOutputs("MasterParamOut")) {
      ctx->SetOutputsDim("MasterParamOut", param_dim);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

125 126 127 128 129
class LarsMomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Param",
             "(LoDTensor, default LoDTensor<float>) "
130 131
             "Input parameter that has to be updated")
        .AsDuplicable();
132 133
    AddInput("Grad",
             "(LoDTensor, default LoDTensor<float>) "
134 135
             "Input gradient of the parameter")
        .AsDuplicable();
136 137 138
    AddInput("Velocity",
             "(LoDTensor, default LoDTensor<float>) "
             "Input velocity (corresponding to the parameter) "
139 140
             "that has to be updated")
        .AsDuplicable();
141 142
    AddInput("LearningRate",
             "(LoDTensor, default LoDTensor<float>) "
143 144 145 146 147
             "Input learning rate")
        .AsDuplicable();
    AddInput("MasterParam", "FP32 master weight for AMP.")
        .AsDuplicable()
        .AsDispensable();
148 149
    AddOutput("ParamOut",
              "(LoDTensor) This output is updated parameter. "
150 151
              "It shared memory with Input(Param).")
        .AsDuplicable();
152 153
    AddOutput("VelocityOut",
              "(LoDTensor) This output is updated velocity. "
154 155
              "It shared memory with Input(Velocity).")
        .AsDuplicable();
156 157 158
    AddOutput("MasterParamOut",
              "The updated FP32 master weight for AMP. "
              "It shared memory with Input(MasterParam).")
159
        .AsDuplicable()
160
        .AsDispensable();
161 162 163
    AddAttr<float>("mu", "(float) Momentum coefficient");
    AddAttr<float>("lars_coeff", "(float, default 0.001) LARS coefficient.")
        .SetDefault(0.001);
164 165 166 167
    AddAttr<std::vector<float>>(
        "lars_weight_decay",
        "(std::vector<float>, default 0.0005) LARS weight decay params")
        .SetDefault({0.0005});
168 169 170
    AddAttr<float>("epsilon",
                   "(float, default 0.0) epsilon to avoid Division by Zero.")
        .SetDefault(0.0);
171 172 173 174 175 176 177 178 179
    AddAttr<bool>("multi_precision",
                  "(bool, default false) "
                  "Whether to use multi-precision during weight updating.")
        .SetDefault(false);
    AddAttr<float>(
        "rescale_grad",
        "(float, default 1.0) Multiply the gradient with `rescale_grad`"
        "before updating. Often choose to be `1.0/batch_size`.")
        .SetDefault(1.0f);
180 181 182 183 184 185

    AddComment(R"DOC(
Lars Momentum Optimizer.
This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each
weight using a local learning rate:
$$
M
minqiyang 已提交
186
local\_lr = \eta  *
187
    \frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\
M
minqiyang 已提交
188
velocity = mu * velocity +
189 190 191 192 193 194 195 196 197 198 199
    local\_lr * (grad + \beta * param) \\
param = param - velocity. \\
$$
Note that we use lars_weight_decay here to decay weights, you may need not to
use L2 regularizers in case of using LARS.
)DOC");
  }
};

class LarsMomentumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
200
  void operator()(framework::InferVarTypeContext* ctx) const override {}
201 202 203 204 205
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
206
REGISTER_OPERATOR(
207
    lars_momentum, ops::LarsMomentumOp, ops::LarsMomentumOpMaker,
H
hong 已提交
208 209 210
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    ops::LarsMomentumOpVarTypeInference);
211 212
REGISTER_OP_CPU_KERNEL(lars_momentum, ops::LarsMomentumOpKernel<float>,
                       ops::LarsMomentumOpKernel<double>);