nullary.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/nullary.h"
16

17
namespace phi {
18

19 20 21 22 23 24 25
void AssignValueInferMeta(const std::vector<int>& shape,
                          DataType dtype,
                          MetaTensor* out) {
  out->set_dims(phi::make_ddim(shape));
  out->set_dtype(dtype);
}

26
void CreateInferMeta(const IntArray& shape, DataType dtype, MetaTensor* out) {
27 28 29 30 31 32 33 34
  if (!shape.FromTensor()) {
    const auto& data = shape.GetData();
    for (size_t i = 0; i < data.size(); ++i) {
      PADDLE_ENFORCE_GE(
          data[i],
          0,
          phi::errors::InvalidArgument(
              "Each value of attribute 'shape' is expected to be no less "
S
Shuangchi He 已提交
35
              "than 0. But received: shape[%u] = %d; shape = [%s].",
36 37 38 39 40
              i,
              data[i],
              phi::make_ddim(data)));
    }
  }
41 42 43
  CreateInferMetaBase(shape.GetData(), dtype, DataLayout::NCHW, out);
}

44 45 46 47 48 49 50 51 52
void CreateIntArrayInferMeta(const IntArray& data,
                             DataType dtype,
                             MetaTensor* out) {
  CreateInferMetaBase({static_cast<int64_t>(data.GetData().size())},
                      dtype,
                      DataLayout::NCHW,
                      out);
}

53 54 55 56
void CreateInferMetaBase(const std::vector<int64_t>& shape,
                         DataType dtype,
                         DataLayout layout,
                         MetaTensor* out) {
57
  auto out_dims = phi::make_ddim(shape);
58 59 60
  out->set_dims(out_dims);
  out->set_dtype(dtype);
  out->set_layout(layout);
61 62
}

63 64 65 66 67 68 69 70 71
void DataInferMeta(const std::string& name,
                   const phi::IntArray& shape,
                   phi::DataType data_type,
                   MetaTensor* out) {
  auto out_dims = phi::make_ddim(shape.GetData());
  out->set_dims(out_dims);
  out->set_dtype(data_type);
}

72 73
void EyeInferMeta(const Scalar& num_rows,
                  const Scalar& num_columns,
74
                  DataType dtype,
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                  MetaTensor* out,
                  MetaConfig config) {
  int64_t rows, columns;
  if (!config.is_runtime && num_rows.FromTensor()) {
    rows = -1;
  } else {
    rows = num_rows.to<int64_t>();
  }

  if (!config.is_runtime && num_columns.FromTensor()) {
    columns = -1;
  } else {
    columns = num_columns.to<int64_t>();
    if (columns == -1) columns = rows;
  }
  out->set_dims({rows, columns});
91 92
  out->set_dtype(dtype);
}
93

94 95 96 97 98 99
void GaussianInferMeta(const IntArray& shape,
                       float mean,
                       float std,
                       int seed,
                       DataType dtype,
                       MetaTensor* out) {
100 101 102 103 104 105
  auto out_dims = phi::make_ddim(shape.GetData());
  out->set_dims(out_dims);
  out->set_dtype(dtype);
  out->set_layout(DataLayout::NCHW);
}

Z
zyfncg 已提交
106 107 108 109 110
void RandpermInferMeta(int n, DataType dtype, MetaTensor* out) {
  out->set_dims(phi::make_ddim({n}));
  out->set_dtype(dtype);
}

111 112 113 114 115 116 117 118 119
void UniformRandomInferMeta(const IntArray& shape,
                            DataType dtype,
                            MetaTensor* out) {
  auto out_dims = phi::make_ddim(shape.GetData());
  out->set_dims(out_dims);
  out->set_dtype(dtype);
  out->set_layout(DataLayout::NCHW);
}

F
From00 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
void RandintInferMeta(
    int low, int high, const IntArray& shape, DataType dtype, MetaTensor* out) {
  PADDLE_ENFORCE_NOT_NULL(
      out, errors::InvalidArgument("Output(Out) of RandintOp is null."));
  PADDLE_ENFORCE_LT(
      low,
      high,
      errors::InvalidArgument("randint's low must less then high, "
                              "but received: low = %d, high = %d.",
                              low,
                              high));

  auto& shape_vector = shape.GetData();

  std::vector<int64_t> tensor_shape;
  tensor_shape.reserve(shape_vector.size());
  for (auto dim : shape_vector) {
    tensor_shape.push_back(static_cast<int64_t>(dim));
  }
  out->set_dims(make_ddim(tensor_shape));
  out->set_dtype(dtype);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void PRecvInferMeta(int peer, DataType dtype, MetaTensor* out) {
  PADDLE_ENFORCE_GE(
      peer,
      0,
      errors::InvalidArgument(
          "The peer (%d) for p_recv op must be non-negative.", peer));
  // auto data_type = phi::TransToPhiDataType(dtype);
  out->set_dtype(dtype);
}

void PRecvArrayInferMeta(int peer,
                         DataType dtype,
                         const std::vector<int>& out_shape,
                         MetaTensor* out) {
  PADDLE_ENFORCE_GE(
      peer,
      0,
      errors::InvalidArgument(
          "The peer (%d) for p_recv op must be non-negative.", peer));

  PADDLE_ENFORCE_GE(out_shape.size(),
                    1,
                    errors::InvalidArgument(
                        "The size of the output shape must be greater than 0 "
                        "but the value given is %d.",
                        out_shape.size()));

  for (size_t i = 0; i < out_shape.size(); ++i) {
    PADDLE_ENFORCE_GE(
        out_shape[i],
        1,
        errors::InvalidArgument("The shape attribute for recv must be set "
                                "explicitly, but the %dth element is %d which "
                                "is less than 1. Or dynamic_shape should be "
                                "set to True for both send_v2 and recv_v2.",
                                i,
                                out_shape[i]));
  }
  out->set_dtype(dtype);
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
void RecvV2InferMeta(const int ring_id,
                     const bool dynamic_shape,
                     const int peer,
                     const std::vector<int>& out_shape,
                     DataType dtype,
                     MetaTensor* out) {
  PADDLE_ENFORCE_GE(
      peer,
      0,
      errors::InvalidArgument(
          "The peer (%d) for recv_v2 op must be non-negative.", peer));

  PADDLE_ENFORCE_GE(
      ring_id,
      0,
      errors::InvalidArgument(
          "The ring_id (%d) for recv_v2 op must be non-negative.", ring_id));

  PADDLE_ENFORCE_GE(out_shape.size(),
                    1,
                    errors::InvalidArgument(
                        "The size of the output shape must be greater than 0 "
                        "but the value given is %d.",
                        out_shape.size()));

  if (!dynamic_shape) {
    for (size_t i = 0; i < out_shape.size(); ++i) {
      PADDLE_ENFORCE_GE(out_shape[i],
                        1,
                        errors::InvalidArgument(
                            "The shape attribute for recv_v2 must be set "
                            "explicitly, but the %dth element is %d which "
                            "is less than 1. Or dynamic_shape should be "
                            "set to True for both send_v2 and recv_v2.",
                            i,
                            out_shape[i]));
    }
    out->set_dims(phi::make_ddim(out_shape));
  }
  out->set_dtype(dtype);
}

226 227 228 229 230 231 232 233 234 235 236 237
void TruncatedGaussianRandomInferMeta(const std::vector<int>& shape,
                                      float mean,
                                      float std,
                                      int seed,
                                      DataType dtype,
                                      MetaTensor* out) {
  auto out_dims = phi::make_ddim(shape);
  out->set_dims(out_dims);
  out->set_dtype(dtype);
  out->set_layout(DataLayout::NCHW);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void TrilIndicesInferMeta(
    int rows, int cols, int offset, DataType dtype, MetaTensor* out) {
  // number of elements in the first row of the tril,bounded by [0, cols]
  auto n_first_row =
      offset > 0 ? std::min<int64_t>(cols, 1 + offset) : rows + offset > 0;
  // number of elements in the last row of the tril, bounded by [0, cols]
  auto n_last_row =
      std::max<int64_t>(0, std::min<int64_t>(cols, rows + offset));
  // number of rows, bounded by [0, rows]
  auto n_row_all = std::max<int64_t>(0, std::min<int64_t>(rows, rows + offset));
  auto n_row_trapezoid = (n_last_row - n_first_row + 1);
  // calculate # of elements in the top trapezoid
  auto tril_size = (n_first_row + n_last_row) * n_row_trapezoid >> 1;
  // calculate # of elements in the bottom rectangle if there is any
  auto diff_row = n_row_all - n_row_trapezoid;
  if (diff_row > 0) {
    tril_size += diff_row * cols;
  }
  std::vector<int64_t> tmp = {2, tril_size};
  auto out_dims = phi::make_ddim(tmp);
  out->set_dims(out_dims);
  out->set_dtype(dtype);
}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

void TriuIndicesInferMeta(
    int row, int col, int offset, DataType dtype, MetaTensor* out) {
  // number of elements in the first row of the tril,bounded by [0, cols]
  // use total item number minus bottom rectangle item number to get
  // the above rectangle item number
  //     triu_size = rows * cols - tril_size
  // so the `offset` need to be set as `offset-1` in order to include
  // the item on the diagonal line
  offset = offset - 1;
  auto n_first_row =
      offset > 0 ? std::min<int64_t>(col, 1 + offset) : row + offset > 0;
  // number of elements in the last row of the tril, bounded by [0, cols]
  auto n_last_row = std::max<int64_t>(0, std::min<int64_t>(col, row + offset));
  // number of rows, bounded by [0, rows]
  auto n_row_all = std::max<int64_t>(0, std::min<int64_t>(row, row + offset));
  auto n_row_trapezoid = (n_last_row - n_first_row + 1);
  // calculate # of elements in the top trapezoid
  auto tril_size = (n_first_row + n_last_row) * n_row_trapezoid >> 1;
  // calculate # of elements in the bottom rectangle if there is any
  auto diff_row = n_row_all - n_row_trapezoid;
  if (diff_row > 0) {
    tril_size += diff_row * col;
  }
  std::vector<int64_t> tmp = {2, row * col - tril_size};
  auto out_dims = phi::make_ddim(tmp);
  out->set_dims(out_dims);
  out->set_dtype(dtype);
}
290
}  // namespace phi