BufferArg.h 9.3 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"

namespace paddle {

enum BufferType {
X
xutianbing 已提交
26 27 28 29 30
  TENSOR_UNKNOWN = 0,
  TENSOR_NORMAL = 1,
  TENSOR_SEQUENCE_ID = 2,
  TENSOR_SEQUENCE_DATA = 3,
  TENSOR_SPARSE = 4
H
hedaoyuan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;

44 45 46 47 48 49 50 51 52
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
53 54 55 56 57
 * Buffer shape
 * For most buffers, the first dimension `shape()[0]` represents
 * the size of the mini-batch.
 *
 * Buffer argType
58 59 60 61 62
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
63 64 65 66 67 68 69 70 71

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
72
class BufferArg {
73 74 75 76 77
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
78
public:
79 80 81 82 83 84 85 86
  BufferArg(ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(nullptr),
        valueType_(valueType),
        shape_(shape),
        argType_(argType) {}

87 88 89 90 91
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {}
H
hedaoyuan 已提交
92 93 94 95

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

96
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
97 98
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
99
        valueType_(DataType<real>::value),
100 101
        shape_(2),
        argType_(argType) {
X
xutianbing 已提交
102
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
103 104 105 106
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

107 108 109
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
110 111
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
112
        valueType_(DataType<real>::value),
113 114
        shape_(shape),
        argType_(argType) {
X
xutianbing 已提交
115
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
116 117 118
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

119
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
120 121
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
122
        valueType_(DataType<real>::value),
123 124
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
125
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
126 127 128
    shape_.setDim(0, vector.getSize());
  }

129
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
130 131
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
132
        valueType_(VALUE_TYPE_INT32),
133 134
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
135
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
136 137 138 139 140 141 142 143
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
144
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
145 146 147 148 149 150 151 152 153
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
154
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }
X
xutianbing 已提交
170 171
  bool isSparse() const { return (TENSOR_SPARSE == bufferType_); }
  bool isSequenceArg() const { return TENSOR_SEQUENCE_DATA == bufferType_; }
H
hedaoyuan 已提交
172 173 174 175 176 177 178 179

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
X
xutianbing 已提交
180 181
  BufferType bufferType_{TENSOR_UNKNOWN};
  ArgType argType_{UNSPECIFIED};
H
hedaoyuan 已提交
182 183 184 185 186 187 188
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
189
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
190 191
class SequenceIdArg : public BufferArg {
public:
192 193 194 195 196 197
  SequenceIdArg(const TensorShape& shape, ArgType argType = UNSPECIFIED)
      : BufferArg(VALUE_TYPE_INT32, shape, argType) {
    CHECK_EQ(shape_.ndims(), (size_t)1);
    numSeqs_ = shape_[0] - 1;
  }

198 199 200 201
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
X
xutianbing 已提交
202
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
203
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
204 205 206 207
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
X
xutianbing 已提交
208
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
209 210 211 212 213 214 215 216 217 218 219
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

220 221 222 223 224
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
H
hedaoyuan 已提交
225 226
class SequenceArg : public BufferArg {
public:
227 228 229 230 231
  SequenceArg(ValueType valueType,
              const TensorShape& shape,
              ArgType argType = UNSPECIFIED)
      : BufferArg(valueType, shape, argType), startPositions_(TensorShape()) {}

H
hedaoyuan 已提交
232 233 234
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
235 236 237
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
X
xutianbing 已提交
238 239 240
        startPositions_(startPositions) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
241

242 243 244
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
X
xutianbing 已提交
245 246 247
      : BufferArg(matrix, argType), startPositions_(vector) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
248 249 250 251 252

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }
253 254
  SequenceIdArg& getSequenceId() { return startPositions_; }
  const SequenceIdArg& getSequenceId() const { return startPositions_; }
H
hedaoyuan 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
272 273 274
                  SparseDataType type,
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
275 276 277 278 279
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
X
xutianbing 已提交
280
    bufferType_ = TENSOR_SPARSE;
H
hedaoyuan 已提交
281
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
282 283 284
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
H
hedaoyuan 已提交
285 286 287 288 289 290 291
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

292
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
293

294
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle