PyDataProvider2.cpp 28.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_NO_PYTHON

17
#include <Python.h>
Y
Yu Yang 已提交
18
#include <numpy/numpyconfig.h>
Z
zhangjinchao01 已提交
19 20 21
#include <stdio.h>
#include <stdlib.h>
#include <list>
Y
Yu Yang 已提交
22
#include <unordered_set>
23 24
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/ndarrayobject.h>
Z
zhangjinchao01 已提交
25 26

#include "DataProvider.h"
27 28

#include "paddle/utils/Locks.h"
Y
Yu Yang 已提交
29
#include "paddle/utils/PythonUtil.h"
30
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
31 32 33

namespace paddle {

34 35 36
namespace unittest {

static std::unique_ptr<std::function<void(size_t /*poolActualSize */)>>
37
    OnPoolFilled;
38 39 40 41 42 43 44 45

namespace pydp2 {

void setOnPoolFilledHook(const std::function<void(size_t)>& callback) {
  OnPoolFilled.reset(new std::function<void(size_t)>());
  *OnPoolFilled = callback;
}

46
void clearOnPoolFilledHook() { OnPoolFilled.reset(); }
47 48 49 50

}  // namespace pydp2
}  // namespace unittest

Z
zhangjinchao01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
/**
 * Slot type
 */
enum SlotType {
  ST_DENSE = 0,
  ST_NON_SPARSE_VALUE = 1,
  ST_SPARSE_VALUE = 2,
  ST_INDEX = 3
};

/**
 * Sequence type
 */
64
enum SeqType { SQT_NONE = 0, SQT_SEQ, SQT_SUBSEQ };
Z
zhangjinchao01 已提交
65 66 67 68 69

/**
 * Cache Type.
 */
enum CacheType {
70
  NO_CACHE = 0,           // Each pass will load data from PyDataProvider2.
Z
zhangjinchao01 已提交
71 72 73 74 75 76 77 78 79 80 81
  CACHE_PASS_IN_MEM = 1,  // First pass will load data from PyDataProvider2,
                          // then cache all data in memory. Load data from
                          // memory in rest passes.
};

struct SlotHeader {  // Slot Header will parse from python object's slots field.
  size_t dim;
  SlotType slotType;
  SeqType seqType;
};

82 83
inline std::ostream& operator<<(std::ostream& os, const SlotHeader& header) {
  os << "Dim = " << header.dim << " Type = " << header.slotType
Z
zhangjinchao01 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
     << " SeqType = " << header.seqType;
  return os;
}

/**
 * FieldScanner Interface.
 *
 * It will read python object, and fill to argument's each slot.
 * There are two steps, prepare and fill. Scanner will alloc memory during
 * prepare step, fill data into argument during fill step.
 */
class IFieldScanner {
public:
  DISABLE_COPY(IFieldScanner);
  /**
   * Ctor.
   * @param headerPtr slot header that scanner belong to.
   */
  explicit IFieldScanner(SlotHeader* headerPtr) : headerPtr_(headerPtr) {}
  virtual ~IFieldScanner() {}

  /**
   * Start prepare step.
   */
  virtual void startPrepare(Argument& argument) {}

  /**
   * Prepare step.
   *
   * @note the obj could be a timestep of sample or whole sample. It depends
   * what scanner it is.
   */
  virtual void prepare(Argument& argument, PyObject* obj) {}

  /**
   * Finish Prepare step.
   */
  virtual void finishPrepare(Argument& argument) {}

  /**
   * Start fill step.
   */
  virtual void startFill(Argument& argument) {}

  /**
   * Fill step.
   *
   * @note the obj could be a timestep of sample or whole sample. It depends
   * what scanner it is.
   */
  virtual void fill(Argument& argument, PyObject* obj) {}

  /**
   * Finish fill step.
   */
  virtual void finishFill(Argument& argument) {}

  /**
   * Factory method. Create a scanner by header. The final scanner may be
   * combine many scanners.
   *
   * @note Fatal if header is not support.
   */
  static IFieldScanner* create(SlotHeader* header);

protected:
  SlotHeader* headerPtr_;
};

/**
 * Py Data Provider Cache Interface.
 */
class IPyDataProviderCache {
public:
  virtual ~IPyDataProviderCache() {}

  /**
   * invoke when DataProvider::reset()
   * @return true if read data from python.
   */
  virtual bool reset() = 0;

  /**
   * invoke when these data are used by DataProvider, and need to clear.
   * @param [inout] data used data.
   *
   * @note The implemented class must clear these data array. Or if you want to
   * delete the PyObjectPtr later, you should make sure the paddle process only
   * have one active thread calling python code (use PyGuard otherwise).
   */
  virtual void drop(std::deque<PyObjectPtr>* data) = 0;

  /**
   * Return whole data in cache.
   */
  virtual std::deque<PyObjectPtr>* load() = 0;

  /**
   * Factory method. Convert CacheType to IPyDataProviderCache*
   */
  static IPyDataProviderCache* create(CacheType ct);
};

/**
 * PyDataProvider2.
 *
 * For usage, please refer python module 'paddle.trainer.PyDataProvider2'
 *
 * Here, we start a thread to read data. It is totally asynchronous for reading
 * data. And it support cache strategies.
 */
class PyDataProvider2 : public DataProvider {
public:
  /**
   * Ctor
   */
  PyDataProvider2(const DataConfig& config,
201
                  const ModelConfig& modelConfig,
Z
zhangjinchao01 已提交
202
                  bool useGpu)
203 204
      : DataProvider(config, useGpu), callingContextCreated_(2) {
    if (PyArray_API == NULL) import_array();
Z
zhangjinchao01 已提交
205 206 207 208
    auto& args = config.load_data_args();
    PyObjectPtr kwargs = PyObjectPtr(PyDict_New());
    if (!args.empty()) {
      kwargs = callPythonFuncRetPyObj(
209
          "paddle.trainer.PyDataProvider2", "deserialize_args", {args});
Z
zhangjinchao01 已提交
210 211 212 213
    }

    py::DictHelper kwargsDict(kwargs);
    kwargsDict.setBool("is_train", !config.for_test());
214 215 216 217 218 219
    std::vector<std::string> inputs;
    inputs.reserve(modelConfig.input_layer_names().size());
    std::copy(modelConfig.input_layer_names().begin(),
              modelConfig.input_layer_names().end(),
              std::back_inserter(inputs));
    kwargsDict.setStringList("input_order", inputs);
Z
zhangjinchao01 已提交
220 221 222 223 224 225 226

    // kwargs is keyword arguemts to create object.
    this->createPyDataObj(config.load_data_module(),
                          config.load_data_object(),
                          config.files(),
                          std::move(kwargs));
    DBG << "Instance " << instance_.get() << " loaded.";
227
    this->readPyFields(config.for_test());
Z
zhangjinchao01 已提交
228 229 230 231 232 233 234
    DBG << "Py Field Done";
  }

  /**
   * Dtor
   * @note will stop loading thread when destructing
   */
235
  virtual ~PyDataProvider2() { resetImpl(false); }
Z
zhangjinchao01 已提交
236 237 238 239 240

private:
  void createPyDataObj(const std::string& model,
                       const std::string& className,
                       const std::string& fileListName,
241 242 243
                       PyObjectPtr&& kwargs  // NOLINT
                       ) {
    LOG(INFO) << "loading dataprovider " << model << "::" << className;
Z
zhangjinchao01 已提交
244

245
    PyObjectPtr module = py::import(model);
Z
zhangjinchao01 已提交
246 247
    PyObjectPtr moduleDict(PyModule_GetDict(module.get()));
    CHECK_PY(moduleDict) << "Invoke module.__dict__ error";
248
    PyObjectPtr cls(PyDict_GetItemString(moduleDict.get(), className.c_str()));
Z
zhangjinchao01 已提交
249 250 251 252 253 254
    CHECK_PY(cls) << "load class " << className.c_str() << "error";

    // If there are multiple python instance share same module, the PyObjectPtr
    // only for instance will make python reference-count error.
    //
    // So here, we increase reference count manually.
Y
Yu Yang 已提交
255 256 257
    Py_XINCREF(module.get());
    Py_XINCREF(moduleDict.get());
    Py_XINCREF(cls.get());
Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267

    PyObjectPtr fileListInPy = loadPyFileLists(fileListName);
    PyDict_SetItemString(kwargs.get(), "file_list", fileListInPy.get());
    {
      PyGuard guard;
      instance_.reset(PyObject_Call(cls.get(), zeroTuple_.get(), kwargs.get()));
    }
    CHECK_PY(instance_) << "Cannot Create instance";
  }

268
  void readPyFields(bool testing) {
Z
zhangjinchao01 已提交
269 270
    py::ObjectHelper self(this->instance_);
    bool ok;
271

272 273
    this->skipShuffle_ =
        !self.getBoolAttr("should_shuffle", &ok /*isBoolType*/);
274 275 276 277 278 279
    if (!ok) {
      this->skipShuffle_ = testing;  // shuffle when is training, skip shuffle
                                     // when is testing.
    }
    DBG << "Provider Skip Shuffle " << this->skipShuffle_;

Z
zhangjinchao01 已提交
280 281 282 283
    this->poolSize_ = self.getIntAttr<size_t>("pool_size", &ok);
    if (!ok) {
      this->poolSize_ = -1UL;
    }
284 285 286 287 288 289
    this->minPoolSize_ = self.getIntAttr<size_t>("min_pool_size", &ok);
    if (!ok) {
      this->minPoolSize_ = -1UL;
    }
    this->minPoolSize_ = std::min(this->poolSize_, this->minPoolSize_);

Z
zhangjinchao01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    this->canOverBatchSize_ = self.getBoolAttr("can_over_batch_size");

    calcBatchSize_.reset(self.getAttr("calc_batch_size"));
    if (this->calcBatchSize_ && !py::isCallable(this->calcBatchSize_)) {
      this->calcBatchSize_.reset();
    }

    generator_.reset(self.getAttr("generator"));
    CHECK(py::isCallable(generator_));

    // Reading slots.
    PyObjectPtr slotsPtr(self.getAttr("slots"));
    py::SequenceHelper slots(slotsPtr);
    headers_.reserve(slots.size());
    for (size_t i = 0; i < slots.size(); ++i) {
      headers_.emplace_back();
      auto& header = headers_.back();
      PyObject* hdPtr = slots[i];
      CHECK(hdPtr != nullptr);
      Py_XINCREF(hdPtr);
      PyObjectPtr headerPtrWrap(hdPtr);
      py::ObjectHelper hd(headerPtrWrap);
      header.dim = hd.getIntAttrWithError<size_t>("dim");
313 314
      header.seqType = (SeqType)hd.getIntAttrWithError<int>("seq_type");
      header.slotType = (SlotType)hd.getIntAttrWithError<int>("type");
Z
zhangjinchao01 已提交
315 316 317
    }

    DBG << "Data header size " << headers_.size();
318
    for (auto& header : headers_) {
Z
zhangjinchao01 已提交
319 320 321 322 323 324 325 326 327 328
      DBG << header;
    }
    cache_.reset(IPyDataProviderCache::create(
        (CacheType)self.getIntAttrWithError<int>("cache")));
  }

  PyObjectPtr loadPyFileLists(const std::string& fileListName) {
    loadFileList(fileListName, fileLists_);
    PyObject* lst = PyList_New(fileLists_.size());
    for (size_t i = 0; i < fileLists_.size(); ++i) {
329
      PyList_SET_ITEM(lst, i, PyString_FromString(fileLists_[i].c_str()));
Z
zhangjinchao01 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    }
    return PyObjectPtr(lst);
  }

  void loadThread() {
    DBG << "Creating context";
    for (auto& filename : fileLists_) {
      PyGuard g;
      py::CallableHelper generator(this->generator_);
      generator.setArgsSize(2);
      generator.getArgs().set(0, instance_);
      generator.getArgs().set(1, PyString_FromString(filename.c_str()), true);
      callingContexts_.emplace_back(generator());
      CHECK_PY(callingContexts_.back()) << "Generator error.";
      CHECK(PyIter_Check(callingContexts_.back()));
    }
    DBG << "Create context done";
    callingContextCreated_.wait();

    PositionRandom p(skipShuffle_);

    while (!exit_ && !callingContexts_.empty()) {
      PyObject* data = nullptr;

      {  // Read data.
        size_t cid = p(callingContexts_.size());
        bool atEnd;
        data = py::iterNext(callingContexts_[cid], &atEnd);
        if (atEnd || data == nullptr) {
359 360 361 362
          if (cid != 0) {
            std::swap(callingContexts_[cid], callingContexts_[0]);
            cid = 0;
          }
363 364 365 366 367 368

          PyObjectPtr front;
          {
            std::unique_lock<std::mutex> l(mtx_);
            front = pop_get_front(callingContexts_);
          }
369 370
          {
            PyGuard g;
371
            front.reset();
372
          }
Z
zhangjinchao01 已提交
373 374 375 376 377 378 379
          this->pullCV_.notify_all();
          continue;
        }
      }

      size_t additionalBatchSize = 1;
      if (calcBatchSize_) {
380
        PyGuard guard;
Z
zhangjinchao01 已提交
381 382 383 384 385 386 387 388 389 390
        py::CallableHelper calcBatchSize(this->calcBatchSize_);
        calcBatchSize.setArgsSize(1);
        calcBatchSize.getArgs().set(0, data);
        PyObjectPtr bs(calcBatchSize());
        CHECK_PY(bs);
        bool ok;
        additionalBatchSize = py::castInt<size_t>(bs.get(), &ok);
        CHECK(ok) << "CalcBatchSize must return int or long";
      }

391
      if (this->loadThread_) {  // wait poolActualSize < poolSize;
Z
zhangjinchao01 已提交
392
        std::unique_lock<std::mutex> l(mtx_);
Y
Yu Yang 已提交
393 394 395
        pushCV_.wait(l, [this, additionalBatchSize] {
          return this->poolActualSize_ < poolSize_;
        });
Z
zhangjinchao01 已提交
396 397 398 399 400 401 402
      }

      {
        std::lock_guard<std::mutex> guard(mtx_);
        poolActualSize_ += additionalBatchSize;
        dataPool_.emplace_back(data);
      }
403
      pullCV_.notify_all();
Z
zhangjinchao01 已提交
404 405 406 407 408 409
    }
    DBG << "load thread end";
  }

  inline void resetImpl(bool startNewThread) {
    DBG << "Reseting " << startNewThread;
Y
Yu Yang 已提交
410
    exit_.store(true);
Z
zhangjinchao01 已提交
411 412 413 414 415 416 417
    if (loadThread_) {  // is loading.
      loadThread_->join();
      loadThread_.reset();
    }
    {
      PyGuard g;
      callingContexts_.clear();
Y
Yu Yang 已提交
418 419 420 421 422 423
      this->pullCV_.notify_one();
    }

    std::lock_guard<std::mutex> guard(mutexForReset_);
    {
      PyGuard g;
Z
zhangjinchao01 已提交
424 425 426
      dataPool_.clear();
    }
    poolActualSize_ = 0;
Y
Yu Yang 已提交
427

Z
zhangjinchao01 已提交
428 429 430
    if (startNewThread && cache_->reset()) {
      DBG << "Start new thread.";
      loadThread_.reset(new std::thread([this] {
Y
Yu Yang 已提交
431
        exit_ = false;
Z
zhangjinchao01 已提交
432 433 434 435 436
        loadThread();
      }));
      callingContextCreated_.wait();
    }
    DBG << "Reset done";
Y
Yu Yang 已提交
437
    exit_ = false;
Z
zhangjinchao01 已提交
438 439 440 441 442
  }

private:
  std::unique_ptr<std::thread> loadThread_;
  std::atomic<bool> exit_;
443
  std::deque<PyObjectPtr> callingContexts_;
Z
zhangjinchao01 已提交
444 445 446 447 448
  std::deque<PyObjectPtr> dataPool_;
  size_t poolActualSize_;
  std::condition_variable pushCV_;
  std::condition_variable pullCV_;
  std::mutex mtx_;
449

Y
Yu Yang 已提交
450 451
  std::mutex mutexForReset_;

Z
zhangjinchao01 已提交
452 453 454 455 456
  ThreadBarrier callingContextCreated_;
  std::unique_ptr<IPyDataProviderCache> cache_;

  PyObjectPtr instance_;
  size_t poolSize_;
457
  size_t minPoolSize_;
Z
zhangjinchao01 已提交
458 459 460 461 462 463 464 465 466
  bool canOverBatchSize_;
  PyObjectPtr calcBatchSize_;
  PyObjectPtr generator_;
  std::vector<std::string> fileLists_;
  std::vector<SlotHeader> headers_;
  static PyObjectPtr zeroTuple_;

  class PositionRandom {
  public:
467 468
    inline explicit PositionRandom(bool skipRand)
        : eng_(ThreadLocalRandomEngine::get()), skipRand_(skipRand) {}
Z
zhangjinchao01 已提交
469

470
    inline size_t operator()(size_t len) {
Z
zhangjinchao01 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
      if (!skipRand_) {
        if (!dist_ || dist_->b() != len - 1) {
          dist_.reset(new std::uniform_int_distribution<size_t>(0, len - 1));
        }
        return (*dist_)(eng_);
      } else {
        return 0;
      }
    }

  private:
    std::default_random_engine& eng_;
    std::unique_ptr<std::uniform_int_distribution<size_t>> dist_;
    bool skipRand_;
  };

  // DataProvider interface
public:
  /**
   * Resetting the PyDataProvider. May start reading thread here.
   */
  virtual void reset() {
    resetImpl(true);
494
    DataProvider::reset();
Z
zhangjinchao01 已提交
495 496 497 498 499 500
  }

  /**
   * Shuffle. Do nothing because PyDataProvider do shuffle implicitly by random
   * select data from datapool.
   */
501
  void shuffle() {}
Z
zhangjinchao01 已提交
502 503 504 505

  /**
   * Not limited size.
   */
506
  int64_t getSize() { return -1; }
Z
zhangjinchao01 已提交
507 508 509 510

  /**
   * Loading a batch of data.
   */
511
  int64_t getNextBatchInternal(int64_t size_, DataBatch* batch) {
Y
Yu Yang 已提交
512
    std::lock_guard<std::mutex> guard(mutexForReset_);
513
    REGISTER_TIMER("PyDP2.getNextBatchInternal")
Z
zhangjinchao01 已提交
514
    CHECK_GE(size_, 0);
515
    size_t size = (size_t)size_;
Z
zhangjinchao01 已提交
516 517 518 519
    if (loadThread_) {  // loading from thread should wait for data pool ready.
                        // but, loading from cache, cache object should ensure
                        // data pool ready.
      std::unique_lock<std::mutex> l(mtx_);
Y
Yu Yang 已提交
520 521 522 523
      pullCV_.wait(l, [this, &size] {
        return this->poolActualSize_ >= std::max(size, this->minPoolSize_) ||
               callingContexts_.empty();
      });
524 525 526 527

      if (unittest::OnPoolFilled) {
        (*unittest::OnPoolFilled)(this->poolActualSize_);
      }
Z
zhangjinchao01 已提交
528 529 530 531 532 533 534 535 536 537
    }
    std::deque<PyObjectPtr> data;
    size_t bsize = 0;
    std::deque<PyObjectPtr>* poolPtr = nullptr;

    if (this->loadThread_) {  // loading from thread.
      poolPtr = &this->dataPool_;
    } else {  // loading from cache.
      poolPtr = this->cache_->load();
    }
Y
Yu Yang 已提交
538 539 540 541
    if (exit_) {
      // PyDataProvider is destructing.
      return 0;
    }
Z
zhangjinchao01 已提交
542 543 544 545 546
    CHECK(poolPtr != nullptr);

    std::deque<PyObjectPtr>& pool = *poolPtr;

    while (bsize < size && !pool.empty()) {
547 548
      {
        // move data from pool to data
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557
        std::lock_guard<std::mutex> guard(mtx_);
        if (skipShuffle_) {
          size_t i = 0;
          CHECK(pool[i] != nullptr);
          data.emplace_back(std::move(pool[i]));
          pool.pop_front();
        } else {  // when shuffle, use swap to drop only last pool element.
          size_t i = ThreadLocalRand::rand() % pool.size();
          CHECK(pool[i] != nullptr);
558 559
          if (i != 0) {
            std::swap(pool[i], pool.front());
Z
zhangjinchao01 已提交
560
          }
561 562
          data.emplace_back(std::move(pool.front()));
          pool.pop_front();
Z
zhangjinchao01 已提交
563
        }
564

Z
zhangjinchao01 已提交
565
        if (calcBatchSize_) {  // custom calc batch size.
566
          PyGuard guard;
Z
zhangjinchao01 已提交
567 568 569 570 571 572
          Py_INCREF(data.back().get());
          py::CallableHelper calcBatchSize(calcBatchSize_);
          calcBatchSize.setArgsSize(1);
          calcBatchSize.getArgs().set(0, data.back());
          PyObjectPtr customBatchSize(calcBatchSize());
          bool ok;
573
          size_t tmp = py::castInt<size_t>(customBatchSize.get(), &ok);
Z
zhangjinchao01 已提交
574
          CHECK(ok) << "calc_batch_size must return int";
575 576 577 578 579 580 581 582 583

          if (bsize + tmp > size && !canOverBatchSize_) {
            // Put data back.
            pool.push_front(std::move(data.back()));
            data.pop_back();
            break;
          } else {
            bsize += tmp;
          }
Z
zhangjinchao01 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        } else {
          bsize += 1;
        }
      }
    }

    if (this->loadThread_) {
      {
        std::lock_guard<std::mutex> g(mtx_);
        poolActualSize_ -= bsize;
      }
      this->pushCV_.notify_all();
    }

    if (bsize == 0) {  // end of pass. In data pool, cannot get any data.
      return 0;
    }

    DataBatch cpuBatch;
    cpuBatch.setSize(bsize);
    auto& inArgs = cpuBatch.getStreams();
    inArgs.resize(headers_.size());
606
    std::vector<std::unique_ptr<IFieldScanner>> scanners;
Z
zhangjinchao01 已提交
607 608 609 610 611
    scanners.reserve(headers_.size());
    for (auto& header : headers_) {
      scanners.emplace_back(IFieldScanner::create(&header));
    }
    DBG << "Scanner created.";
612
    for (size_t i = 0; i < headers_.size(); ++i) {
Z
zhangjinchao01 已提交
613 614
      scanners[i]->startPrepare(inArgs[i]);
    }
615
    for (auto& d : data) {
Z
zhangjinchao01 已提交
616
      py::SequenceHelper s(d);
617
      for (size_t i = 0; i < headers_.size(); ++i) {
Z
zhangjinchao01 已提交
618 619 620
        scanners[i]->prepare(inArgs[i], s[i]);
      }
    }
621
    for (size_t i = 0; i < headers_.size(); ++i) {
Z
zhangjinchao01 已提交
622 623
      scanners[i]->finishPrepare(inArgs[i]);
    }
624
    for (size_t i = 0; i < headers_.size(); ++i) {
Z
zhangjinchao01 已提交
625 626
      scanners[i]->startFill(inArgs[i]);
    }
627
    for (auto& d : data) {
Z
zhangjinchao01 已提交
628 629 630 631 632 633
      py::SequenceHelper s(d);
      for (size_t i = 0; i < headers_.size(); ++i) {
        scanners[i]->fill(inArgs[i], s[i]);
      }
    }

634
    for (size_t i = 0; i < headers_.size(); ++i) {
Z
zhangjinchao01 已提交
635 636 637
      scanners[i]->finishFill(inArgs[i]);
    }

638 639 640 641 642
    {
      PyGuard g;
      cache_->drop(&data);
    }

Z
zhangjinchao01 已提交
643 644 645 646 647 648 649
    DBG << "Reading CPU Batch Done.";

    if (useGpu_) {
      std::vector<Argument>& cpuArguments = cpuBatch.getStreams();
      DataBatch& gpuBatch = *batch;
      std::vector<Argument>& gpuArguments = gpuBatch.getStreams();
      gpuArguments.resize(cpuArguments.size());
650
      gpuBatch.setSize(bsize);
Z
zhangjinchao01 已提交
651
      for (size_t i = 0; i < headers_.size(); ++i) {
652 653
        gpuArguments[i].resizeAndCopyFrom(
            cpuArguments[i], useGpu_, HPPL_STREAM_1);
Z
zhangjinchao01 已提交
654 655 656 657 658 659 660 661 662 663 664
      }
      hl_stream_synchronize(HPPL_STREAM_1);
    } else {
      *batch = cpuBatch;
    }
    return bsize;
  }
};

PyObjectPtr PyDataProvider2::zeroTuple_(PyTuple_New(0));

665 666
REGISTER_DATA_PROVIDER_EX(py2, PyDataProvider2);

Z
zhangjinchao01 已提交
667 668 669
/**
 * Scanner for dense slot.
 */
670
class DenseScanner : public IFieldScanner {
Z
zhangjinchao01 已提交
671
public:
672
  explicit DenseScanner(SlotHeader* ptr) : IFieldScanner(ptr), height_(0) {}
Z
zhangjinchao01 已提交
673 674 675 676 677 678

  /**
   * Prepare.
   * @param argument target argument
   * @param obj each timestep of a sample.
   */
679
  virtual void prepare(Argument& argument, PyObject* obj) { ++height_; }
Z
zhangjinchao01 已提交
680

681 682 683
  virtual void finishPrepare(Argument& argument) {
    Matrix::resizeOrCreate(
        argument.value, height_, headerPtr_->dim, false, false);
Z
zhangjinchao01 已提交
684 685 686 687 688 689 690 691
    height_ = 0;
  }

  /**
   * Fill argument from obj.
   * @param argument
   * @param obj
   */
692
  virtual void fill(Argument& argument, PyObject* obj) {
Z
zhangjinchao01 已提交
693
    real* dat = argument.value->getData() + height_ * headerPtr_->dim;
694
    if (PyArray_Check(obj)) {
695 696 697 698 699 700 701 702 703 704 705 706 707 708
      auto dtype = PyArray_DTYPE((PyArrayObject*)obj);
      if (dtype->type == 'f' && dtype->elsize == sizeof(real)) {
        real* data = (real*)PyArray_DATA((PyArrayObject*)obj);
        auto sz = PyArray_SIZE((PyArrayObject*)obj);
        std::copy(data, data + sz, dat);
      } else {
        LOG(FATAL) << "You should yield float" << sizeof(real) * 8 << " array";
      }
    } else {
      py::SequenceHelper s(obj);
      // TODO(yuyang18): Here we can use AVX or SSE to accelerate memory copy.
      for (size_t i = 0; i < headerPtr_->dim; ++i) {
        dat[i] = (real)s.getDouble(i);
      }
Z
zhangjinchao01 已提交
709 710 711 712 713 714 715 716 717 718 719
    }
    ++height_;
  }

private:
  size_t height_;
};

/**
 * Scanner for index slot
 */
720
class IndexScanner : public IFieldScanner {
Z
zhangjinchao01 已提交
721
public:
722
  explicit IndexScanner(SlotHeader* ptr) : IFieldScanner(ptr), cnt_(0) {}
Z
zhangjinchao01 已提交
723 724 725 726 727 728

  /**
   * Prepare memory space.
   *
   * @note obj is a single timestep of sample
   */
729
  virtual void prepare(Argument& argument, PyObject* obj) { ++cnt_; }
Z
zhangjinchao01 已提交
730

731
  virtual void finishPrepare(Argument& argument) {
Z
zhangjinchao01 已提交
732 733 734 735 736 737 738
    IVector::resizeOrCreate(argument.ids, cnt_, false);
    cnt_ = 0;
  }

  /**
   * Fill one index to argument.
   */
739
  virtual void fill(Argument& argument, PyObject* obj) {
Z
zhangjinchao01 已提交
740
    bool ok;
741
    argument.ids->getData()[cnt_++] = py::castInt<int>(obj, &ok);
Z
zhangjinchao01 已提交
742 743 744 745 746 747 748 749 750
    CHECK(ok) << "Cannot cast int " << py::repr(obj);
  }

private:
  size_t cnt_;
};

class SparseNonValueScanner : public IFieldScanner {
public:
751 752
  explicit SparseNonValueScanner(SlotHeader* ptr)
      : IFieldScanner(ptr), nnz_(0), height_(0) {}
Z
zhangjinchao01 已提交
753 754 755 756 757

  /**
   * Prepare memory space
   * @note obj is a timestep of one sample.
   */
758
  virtual void prepare(Argument& argument, PyObject* obj) {
Z
zhangjinchao01 已提交
759 760 761 762
    ++height_;
    nnz_ += py::SequenceHelper(obj).size();
  }

763 764 765
  virtual void finishPrepare(Argument& argument) {
    Matrix::resizeOrCreateSparseMatrix(
        argument.value, height_, headerPtr_->dim, nnz_, NO_VALUE);
Z
zhangjinchao01 已提交
766 767
  }

768 769
  virtual void startFill(Argument& argument) {
    auto smat = (CpuSparseMatrix*)(argument.value.get());
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779 780 781
    smat->getRows()[0] = 0;
    nnz_ = 0;
    height_ = 1;
  }

  /**
   * Fill one sparse vector to argument.
   * @note obj is a timestep of one sample.
   */
  virtual void fill(Argument& argument, PyObject* obj) {
    py::SequenceHelper s(obj);
    auto sz = s.size();
782
    auto smat = (CpuSparseMatrix*)(argument.value.get());
Z
zhangjinchao01 已提交
783 784 785
    int* row = smat->getRows();
    int* col = smat->getCols();
    real* dat = smat->getData();
786
    row[height_] = row[height_ - 1] + (int)sz;
Z
zhangjinchao01 已提交
787 788

    for (decltype(sz) i = 0; i < sz; ++i) {
789
      setData(col + nnz_, dat + nnz_, s[i]);
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802
      ++nnz_;
    }
    ++height_;
  }

protected:
  /**
   * Set a single sparse index and value.
   * @param [out] col sparse index
   * @param [out] dat sparse value
   * @param [in] obj Python Object. For sparse_non_value is a PyInt or PyLong.
   *                 For sparse_value is a Tuple (int, float).
   */
803
  virtual void setData(int* col, real* dat, PyObject* obj) {
Z
zhangjinchao01 已提交
804 805 806 807 808 809 810 811 812 813 814
    bool ok;
    *col = py::castInt<int>(obj, &ok);
    CHECK(ok);
  }

  size_t nnz_;
  size_t height_;
};

class SparseValueScanner : public SparseNonValueScanner {
public:
815
  explicit SparseValueScanner(SlotHeader* ptr) : SparseNonValueScanner(ptr) {}
Z
zhangjinchao01 已提交
816

817 818 819
  virtual void finishPrepare(Argument& argument) {
    Matrix::resizeOrCreateSparseMatrix(
        argument.value, height_, headerPtr_->dim, nnz_, FLOAT_VALUE);
Z
zhangjinchao01 已提交
820 821 822
  }

protected:
823
  virtual void setData(int* col, real* dat, PyObject* obj) {
Z
zhangjinchao01 已提交
824 825
    py::SequenceHelper s(obj);
    SparseNonValueScanner::setData(col, dat, s[0]);
826
    *dat = (real)s.getDouble(1);
Z
zhangjinchao01 已提交
827 828 829 830 831 832
  }
};

/**
 * Sequence Scanner. Scanner for sequence or sub-sequence.
 */
833
class SequenceScanner : public IFieldScanner {
Z
zhangjinchao01 已提交
834 835 836 837 838 839 840 841
public:
  /**
   * Ctor
   * @param innerScanner inner scanner for each timestep or sub-sequence.
   * @param getSeqStartPos A callback, (Argument) => ICpuGpuVectorPtr.
   *                       return a sequence start position or a sub-sequence
   *                       start position.
   */
842 843 844 845 846 847 848
  SequenceScanner(
      std::unique_ptr<IFieldScanner>&& innerScanner,
      const std::function<ICpuGpuVectorPtr&(Argument&)>& getSeqStartPos)
      : IFieldScanner(nullptr),
        inner_(std::move(innerScanner)),
        cnt_(0),
        getSeqStartPos_(getSeqStartPos) {}
Z
zhangjinchao01 已提交
849 850 851 852

  /**
   * Start prepare. Invoke inner->startPrepare too.
   */
853
  virtual void startPrepare(Argument& argument) {
Z
zhangjinchao01 已提交
854 855 856 857 858 859 860
    inner_->startPrepare(argument);
  }

  /**
   * Prepare. obj is a list or tuple. it will invoke inner_->prepare for each
   * element of sequence obj.
   */
861
  virtual void prepare(Argument& argument, PyObject* obj) {
Z
zhangjinchao01 已提交
862 863
    py::SequenceHelper s(obj);
    ++cnt_;
864
    for (size_t i = 0; i < s.size(); ++i) {
Z
zhangjinchao01 已提交
865 866 867 868 869 870 871
      inner_->prepare(argument, s[i]);
    }
  }

  /**
   * Finish prepare. invoke inner_->finishPrepare too.
   */
872
  virtual void finishPrepare(Argument& argument) {
Z
zhangjinchao01 已提交
873 874 875 876 877 878 879
    ICpuGpuVector::resizeOrCreate(getSeqStartPos_(argument), cnt_ + 1, false);
    inner_->finishPrepare(argument);
  }

  /**
   * Start fill. invoke inner->startFill too.
   */
880
  virtual void startFill(Argument& argument) {
Z
zhangjinchao01 已提交
881 882 883 884 885 886 887 888 889 890
    getSeqStartPos_(argument)->getMutableData(false)[0] = 0;
    cnt_ = 1;
    inner_->startFill(argument);
  }

  /**
   * Fill. Obj is a tuple or list. invoke inner->fill for each element of
   * sequence obj. And set seqStartPos at same time. The seqStartPos will be
   * calculated by getSeqStartPos callback passed in ctor.
   */
891
  virtual void fill(Argument& argument, PyObject* obj) {
Z
zhangjinchao01 已提交
892
    getSeqStartPos_(argument)->getMutableData(false)[cnt_] =
893 894
        getSeqStartPos_(argument)->getMutableData(false)[cnt_ - 1] +
        (int)getSize(obj);
Z
zhangjinchao01 已提交
895 896
    py::SequenceHelper s(obj);
    ++cnt_;
897
    for (size_t i = 0; i < s.size(); ++i) {
Z
zhangjinchao01 已提交
898 899 900 901 902 903 904
      inner_->fill(argument, s[i]);
    }
  }

  /**
   * Finish fill. will invoke inner->finishFill too.
   */
905
  virtual void finishFill(Argument& argument) { inner_->finishFill(argument); }
Z
zhangjinchao01 已提交
906 907 908 909 910 911 912

protected:
  size_t getSize(PyObject* obj) {
    py::SequenceHelper s(obj);
    auto sc = dynamic_cast<SequenceScanner*>(inner_.get());
    if (sc) {
      size_t sum = 0;
913
      for (size_t i = 0; i < s.size(); ++i) {
Z
zhangjinchao01 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927
        sum += sc->getSize(s[i]);
      }
      return sum;
    } else {
      return s.size();
    }
  }

private:
  std::unique_ptr<IFieldScanner> inner_;
  size_t cnt_;
  std::function<ICpuGpuVectorPtr&(Argument&)> getSeqStartPos_;
};

928
IFieldScanner* IFieldScanner::create(SlotHeader* header) {
Z
zhangjinchao01 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
  IFieldScanner* retv = nullptr;
  switch (header->slotType) {
    case ST_DENSE:
      retv = new DenseScanner(header);
      break;
    case ST_INDEX:
      retv = new IndexScanner(header);
      break;
    case ST_NON_SPARSE_VALUE:
      retv = new SparseNonValueScanner(header);
      break;
    case ST_SPARSE_VALUE:
      retv = new SparseValueScanner(header);
      break;
    default:
      LOG(FATAL) << "Not implemented " << header->slotType;
  }

  switch (header->seqType) {
    case SQT_NONE:
      break;
    case SQT_SUBSEQ:
      retv = new SequenceScanner(std::unique_ptr<IFieldScanner>(retv),
952 953 954 955
                                 [](Argument& arg) -> ICpuGpuVectorPtr& {
                                   return arg.subSequenceStartPositions;
                                 });
    // fall through, not break;
Z
zhangjinchao01 已提交
956 957
    case SQT_SEQ:
      retv = new SequenceScanner(std::unique_ptr<IFieldScanner>(retv),
958 959 960
                                 [](Argument& arg) -> ICpuGpuVectorPtr& {
                                   return arg.sequenceStartPositions;
                                 });
Z
zhangjinchao01 已提交
961 962 963 964 965 966 967 968 969 970 971 972
      break;
    default:
      LOG(FATAL) << "Not implemented";
  }

  return retv;
}

/**
 * No Cache Strategy. Will destruct old data immediately and load data from
 * python every pass.
 */
973
class NoCacheStrategy : public IPyDataProviderCache {
Z
zhangjinchao01 已提交
974
public:
975
  virtual bool reset() { return true; }
Z
zhangjinchao01 已提交
976

977
  virtual void drop(std::deque<PyObjectPtr>* data) { data->clear(); }
Z
zhangjinchao01 已提交
978

979
  virtual std::deque<PyObjectPtr>* load() { return nullptr; }
Z
zhangjinchao01 已提交
980 981 982 983 984 985 986 987 988 989
};

/**
 * Cache One Pass In Memory strategy.
 *
 * In first pass, will load data from python and store them in memory.
 * The rest passes, will load data from memory.
 */
class CacheOnePassInMemory : public IPyDataProviderCache {
public:
990 991 992
  CacheOnePassInMemory()
      : objPool_(new std::deque<PyObjectPtr>()),
        droppedPool_(new std::deque<PyObjectPtr>()) {}
Z
zhangjinchao01 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004

  virtual bool reset() {
    if (objPool_->empty() && droppedPool_->empty()) {
      return true;
    } else if (objPool_->empty()) {
      std::swap(objPool_, droppedPool_);
      return false;
    } else {
      LOG(FATAL) << "Unexpected branch";
    }
  }

1005
  virtual void drop(std::deque<PyObjectPtr>* data) {
Z
zhangjinchao01 已提交
1006 1007
    size_t orgSize = droppedPool_->size();
    droppedPool_->resize(orgSize + data->size());
1008
    for (size_t i = 0; i < data->size(); ++i) {
Z
zhangjinchao01 已提交
1009 1010 1011 1012 1013
      std::swap((*droppedPool_)[orgSize + i], (*data)[i]);
    }
    data->clear();
  }

1014
  virtual std::deque<PyObjectPtr>* load() { return objPool_.get(); }
Z
zhangjinchao01 已提交
1015 1016

private:
1017 1018
  std::unique_ptr<std::deque<PyObjectPtr>> objPool_;
  std::unique_ptr<std::deque<PyObjectPtr>> droppedPool_;
Z
zhangjinchao01 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
};

IPyDataProviderCache* IPyDataProviderCache::create(CacheType ct) {
  switch (ct) {
    case NO_CACHE:
      return new NoCacheStrategy();
    case CACHE_PASS_IN_MEM:
      return new CacheOnePassInMemory();
    default:
      LOG(FATAL) << "Not implemented";
  }
}
}  // namespace paddle

#endif