auto_parallel_quantization.py 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import logging

import numpy as np

19
import paddle
20 21
from paddle.fluid import core, framework
from paddle.fluid.contrib.slim.quantization import (
22
    AddQuantDequantForInferencePass,
23 24 25 26 27 28
    AddQuantDequantPassV2,
    OutScaleForTrainingPass,
    QuantizationTransformPassV2,
    utils,
)
from paddle.fluid.dygraph.parallel import ParallelEnv
29

30 31 32 33 34
from ..auto_parallel.converter import Converter
from ..auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
35 36 37 38 39 40 41 42 43 44 45 46 47
from .pass_base import PassBase, register_pass

TRANSFORM_PASS_OP_TYPES = utils._weight_supported_quantizable_op_type
QUANT_DEQUANT_PASS_OP_TYPES = utils._act_supported_quantizable_op_type


def _node_id(node):
    return (node.node.graph_id(), node.node.id())


@register_pass("auto_parallel_quantization")
class QuantizationPass(PassBase):
    def __init__(self):
48
        super().__init__()
49 50
        self.set_attr("dist_context", None)
        self.set_attr("params_grads", None)
51 52
        self.set_attr("mode", "train")
        self.set_attr("loss", None)
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if self.get_attr("params_grads") is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, context):

        dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")
68 69
        mode = self.get_attr("mode")
        loss = self.get_attr("loss")
70 71 72 73 74 75

        # TODO: scope and place will be removed,
        # cause params should be initialized by engine module.
        scope = paddle.static.global_scope()
        place = paddle.fluid.CUDAPlace(ParallelEnv().dev_id)

76 77 78 79 80 81
        # 0. record the relation among blocks
        parent_idx_dict = dict()
        for block in main_program.blocks:
            parent_idx_dict[block.idx] = block.parent_idx

        is_test = True if mode != "train" else False
82
        # 1. Program convert to Graph, and this pass is only for train mode
83
        main_graph = framework.IrGraph(
84
            core.Graph(main_program.desc), for_test=mode != "train"
85
        )
86 87 88 89 90

        # 2. Prepare inputs
        transform_pass_ops = []
        quant_dequant_ops = []
        quantize_op_types = [
91 92 93 94 95
            'conv2d',
            'depthwise_conv2d',
            'mul',
            'matmul',
            'matmul_v2',
96 97 98 99 100 101 102
        ]
        for op_type in quantize_op_types:
            if op_type in TRANSFORM_PASS_OP_TYPES:
                transform_pass_ops.append(op_type)
            elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
                quant_dequant_ops.append(op_type)

103 104 105 106 107
        weight_quantize_type = (
            "channel_wise_abs_max"
            if self.get_attr('channel_wise_abs_max')
            else "abs_max"
        )
108 109

        # 3. Add quant op for ops which have parameters
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        if len(transform_pass_ops) > 0:
            transform_pass = QuantizationTransformPassV2(
                scope=scope,
                place=place,
                weight_bits=self.get_attr('weight_bits'),
                activation_bits=self.get_attr('activation_bits'),
                skip_pattern=self.get_attr('not_quant_pattern'),
                activation_quantize_type="moving_average_abs_max",
                quantizable_op_type=transform_pass_ops,
                weight_quantize_type=weight_quantize_type,
                weight_quantize_func=None,
                act_quantize_func=None,
                weight_preprocess_func=None,
                act_preprocess_func=None,
                optimizer_func=None,
                executor=None,
                is_test=is_test,
            )
            for sub_graph in main_graph.all_sub_graphs():
                transform_pass.apply(sub_graph)
130 131

        # 4. Add quant op for ops which don't have parameter
132 133 134 135 136 137 138 139 140 141 142
        if len(quant_dequant_ops) > 0:
            quant_dequant_pass = AddQuantDequantPassV2(
                scope=scope,
                place=place,
                quant_bits=self.get_attr('activation_bits'),
                skip_pattern=self.get_attr('not_quant_pattern'),
                quantizable_op_type=quant_dequant_ops,
                is_test=is_test,
            )
            for sub_graph in main_graph.all_sub_graphs():
                quant_dequant_pass.apply(sub_graph)
143 144

        # 5. Gather quantitative information for the output
145
        out_scale_training_pass = OutScaleForTrainingPass(
146
            scope=scope, place=place, is_test=is_test
147
        )
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        for sub_graph in main_graph.all_sub_graphs():
            out_scale_training_pass.apply(sub_graph)

        # 6. When export quant model, traverse to find the output of each op, and insert the quant/dequant op after it.
        if mode != "train" and self.get_attr('onnx_format'):
            try:
                out_scale_infer_pass = AddQuantDequantForInferencePass(
                    scope=scope,
                    place=place,
                    quant_bits=self.get_attr('activation_bits'),
                )
                # for sub_graph in main_graph.all_sub_graphs():
                #     out_scale_infer_pass.apply(sub_graph)
            except:
                logging.warning(
                    "Unable to convert quant model with onnx_format=True, please update PaddlePaddle >= 2.4.0"
                )
165

166
        # 7. Convert Graph back to Program
167
        quant_program = main_graph.to_program()
168
        quant_program = self.move_presist_var_to_global_block(quant_program)
169

170
        # 8.1 get new prams_grads from quant_program
171 172 173 174 175 176 177 178 179
        new_params_grads = []
        for param, grad in params_grads:
            if param.name not in quant_program.global_block().vars:
                continue

            new_param = quant_program.global_block().vars[param.name]
            new_grad = quant_program.global_block().vars[grad.name]
            new_params_grads.append((new_param, new_grad))

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        # 8.2 get new loss var
        new_loss = None
        if loss:
            new_loss = quant_program.global_block().vars[loss.name]

        # 8.3 recover the relation among blocks
        for block in quant_program.blocks:
            block.desc._set_forward_block_idx(parent_idx_dict[block.idx])

        # 9. complete distributed attribution
        self.set_dist_attr_for_qat_program(
            quant_program, main_program, dist_context
        )

        # 10. reset scale var value with dist_attr
        self.reset_scope_var(quant_program, dist_context, scope, place)

        context.set_attr("main_program", quant_program)
        context.set_attr("startup_program", startup_program)
        context.set_attr("params_grads", new_params_grads)
        context.set_attr("loss", new_loss)

    def move_presist_var_to_global_block(self, program):
        global_block = program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)
        return program

    def reset_scope_var(self, quant_program, dist_context, scope, place):
        # The var_value, created by qatization_passes, should has same shape with the value after parallel.
        for var in quant_program.list_vars():
            scope_var = scope.find_var(var.name)
            if not (scope_var and scope_var.get_tensor()._is_initialized()):
                continue
            tensor = scope_var.get_tensor()
            if var.shape == tensor.shape:
                continue

            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
            dist_attr = {
                "dims_mapping": var_dist_attr.dims_mapping,
                "process_shape": var_dist_attr.process_mesh.topology,
                "process_group": var_dist_attr.process_mesh.processes,
            }

            # slice tensor_value with dist_attr
            sliced_tensor = Converter.slice_with_dist_attr(
                np.array(tensor), dist_attr
            )
            tensor._clear()
            tensor.set(sliced_tensor, place)

    def set_dist_attr_for_qat_program(
        self, quant_program, main_program, dist_context
    ):
246 247 248 249 250 251 252
        # NOTE: hack implement, upgrading soon
        for ib, block in enumerate(quant_program.blocks):
            # recover origin ops' dist_attr and set quant ops' dist_attr
            qat_offset = 0
            for ip, quant_op in enumerate(block.ops):
                quant_op_dist_attr = OperatorDistributedAttribute()

253 254 255 256
                if (
                    "quantize" in quant_op.type
                    or quant_op.type == "moving_average_abs_max_scale"
                ):
257
                    # set all quantization ops' dist_attr by quantified op
258 259
                    input_name = quant_op.desc.input('X')[0]
                    if "quantize" in input_name:
260 261 262
                        input_name = input_name[
                            : input_name.index(".quantized")
                        ]
263

264 265 266 267 268 269 270 271 272
                    if (
                        quant_op.type == "moving_average_abs_max_scale"
                        or ip - qat_offset >= len(main_program.blocks[ib].ops)
                    ):
                        consume_op = (
                            main_program.blocks[ib]
                            ._var_recursive(input_name)
                            .op
                        )
273
                    else:
274 275 276
                        consume_op = main_program.blocks[ib].ops[
                            ip - qat_offset
                        ]
277
                    consume_op_dist_attr = dist_context.get_dist_op_for_program(
278 279
                        consume_op
                    ).dist_attr
280 281 282
                    ref_process_mesh = consume_op_dist_attr.process_mesh

                    if input_name in consume_op_dist_attr.outputs_dist_attrs:
283 284 285
                        consume_input_dist_attr = (
                            consume_op_dist_attr.outputs_dist_attrs[input_name]
                        )
286
                    else:
287 288 289
                        consume_input_dist_attr = (
                            consume_op_dist_attr.inputs_dist_attrs[input_name]
                        )
290 291 292 293 294

                    quant_op_dist_attr.impl_idx = 0
                    quant_op_dist_attr.impl_type = "default"
                    quant_op_dist_attr.process_mesh = ref_process_mesh
                    quant_op_dist_attr.set_input_dist_attr(
295 296
                        quant_op.desc.input('X')[0], consume_input_dist_attr
                    )
297 298

                    for slot_name in quant_op.desc.input_names():
299 300 301
                        in_name = quant_op.desc.input(slot_name)[0]
                        input_var = block._var_recursive(in_name)
                        ref_dims_mapping = [-1]
302 303
                        if slot_name == "X":
                            continue
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                        elif slot_name in ['Scale', 'ZeroPoint']:
                            if (
                                quant_op.has_attr('quant_axis')
                                and quant_op.attr('quant_axis') != -1
                            ):
                                x_name = quant_op.desc.input('X')[0]
                                x_var = block._var_recursive(x_name)
                                x_dist_attr = (
                                    quant_op_dist_attr.get_input_dist_attr(
                                        x_name
                                    )
                                )
                                quant_axis = quant_op.attr('quant_axis')
                                ref_dims_mapping = [
                                    x_dist_attr.dims_mapping[quant_axis]
                                ]

                        tensor_dist_attr = TensorDistributedAttribute()
                        tensor_dist_attr.process_mesh = ref_process_mesh
                        tensor_dist_attr.dims_mapping = ref_dims_mapping
                        dist_context.set_tensor_dist_attr_for_program(
                            input_var, tensor_dist_attr
                        )
                        quant_op_dist_attr.set_input_dist_attr(
                            in_name, tensor_dist_attr
                        )
330 331 332

                    for slot_name in quant_op.desc.output_names():
                        output_name = quant_op.desc.output(slot_name)[0]
333 334
                        output_var = block._var_recursive(output_name)
                        ref_dims_mapping = [-1]
335 336
                        if slot_name == "Y":
                            dist_context.set_tensor_dist_attr_for_program(
337 338
                                output_var, consume_input_dist_attr
                            )
339
                            quant_op_dist_attr.set_output_dist_attr(
340 341
                                output_name, consume_input_dist_attr
                            )
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
                            continue
                        elif slot_name == "OutScale":
                            if (
                                quant_op.has_attr('quant_axis')
                                and quant_op.attr('quant_axis') != -1
                            ):
                                x_name = quant_op.desc.input('X')[0]
                                x_var = block._var_recursive(x_name)
                                x_dist_attr = (
                                    quant_op_dist_attr.get_input_dist_attr(
                                        x_name
                                    )
                                )
                                quant_axis = quant_op.attr('quant_axis')
                                ref_dims_mapping = [
                                    x_dist_attr.dims_mapping[quant_axis]
                                ]

                        tensor_dist_attr = TensorDistributedAttribute()
                        tensor_dist_attr.process_mesh = ref_process_mesh
                        tensor_dist_attr.dims_mapping = ref_dims_mapping
                        dist_context.set_tensor_dist_attr_for_program(
                            output_var, tensor_dist_attr
                        )
                        quant_op_dist_attr.set_output_dist_attr(
                            output_name, tensor_dist_attr
                        )
369 370 371 372 373

                    quant_op._set_attr("op_device", "")
                    qat_offset += 1

                else:
374
                    # recover origin ops' dist_attr
375 376 377
                    origin_op = main_program.blocks[ib].ops[ip - qat_offset]
                    quant_op.desc.set_original_id(origin_op.desc.original_id())
                    dist_origin_op = dist_context.get_dist_op_for_program(
378 379 380 381 382
                        origin_op
                    )
                    assert (
                        dist_origin_op is not None
                    ), "origin op must have dist attr."
383 384 385 386

                    origin_op_dist_attr = dist_origin_op.dist_attr
                    quant_op_dist_attr.impl_idx = origin_op_dist_attr.impl_idx
                    quant_op_dist_attr.impl_type = origin_op_dist_attr.impl_type
387 388 389
                    quant_op_dist_attr.process_mesh = (
                        origin_op_dist_attr.process_mesh
                    )
390 391

                    scale_offset = 0
392
                    for idx, input_name in enumerate(quant_op.input_arg_names):
393 394 395 396 397 398 399 400 401 402 403 404
                        if (
                            origin_op.type == "while"
                            and input_name not in origin_op.input_arg_names
                        ):
                            assert (
                                "@scale" in input_name
                                or "@zero_point" in input_name
                            )
                            scale_offset += 1
                            continue

                        idx -= scale_offset
405
                        origin_input_name = origin_op.input_arg_names[idx]
406 407 408 409 410
                        origin_input_dist_attr = (
                            origin_op_dist_attr.inputs_dist_attrs[
                                origin_input_name
                            ]
                        )
411
                        quant_op_dist_attr.set_input_dist_attr(
412 413
                            input_name, origin_input_dist_attr
                        )
414 415

                    for idx, output_name in enumerate(
416 417
                        quant_op.output_arg_names
                    ):
418
                        origin_output_name = origin_op.output_arg_names[idx]
419 420 421 422 423
                        origin_output_dist_attr = (
                            origin_op_dist_attr.outputs_dist_attrs[
                                origin_output_name
                            ]
                        )
424
                        quant_op_dist_attr.set_output_dist_attr(
425 426
                            output_name, origin_output_dist_attr
                        )
427

428 429 430 431 432 433
                        if not main_program.blocks[ib]._find_var_recursive(
                            output_name
                        ):
                            origin_output_var = main_program.blocks[
                                ib
                            ]._var_recursive(origin_output_name)
434 435 436 437 438
                            origin_out_tensor_dist_attr = (
                                dist_context.get_dist_tensor_for_program(
                                    origin_output_var
                                ).dist_attr
                            )
439
                            quant_output_var = block._var_recursive(output_name)
440
                            dist_context.set_tensor_dist_attr_for_program(
441 442
                                quant_output_var, origin_out_tensor_dist_attr
                            )
443 444

                dist_context.set_op_dist_attr_for_program(
445 446
                    quant_op, quant_op_dist_attr
                )
447 448 449 450 451 452

            # recover vars' dist_attr
            for name, dst_var in block.vars.items():
                if name in main_program.blocks[ib].vars:
                    src_var = main_program.blocks[ib].vars[name]
                    dist_tensor = dist_context.get_dist_tensor_for_program(
453 454
                        src_var
                    )
455 456 457
                    if not dist_tensor:
                        continue
                    dist_context.set_tensor_dist_attr_for_program(
458 459
                        dst_var, dist_tensor.dist_attr
                    )