elementwise_op.h 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
G
gongweibao 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
28
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
29
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
30
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
32
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
38
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
39
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
40 41
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
42 43 44
  }
};

C
chengduoZH 已提交
45 46 47 48 49 50 51 52 53 54
class ElementwiseOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto x_var = op_desc.Input("X")[0];
    auto out_var = op_desc.Output("Out")[0];
    block->Var(out_var)->SetType(block->Var(x_var)->GetType());
  }
};

G
gongweibao 已提交
55 56
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
57
  ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
58
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
59 60 61
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
62
    AddAttr<int>("axis",
C
caoying03 已提交
63 64
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
65 66 67
        .SetDefault(-1)
        .EqualGreaterThan(-1);
    comment_ = R"DOC(
K
kexinzhao 已提交
68 69 70 71
Limited Elementwise {name} Operator.

The equation is:

C
caoying03 已提交
72
$${equation}$$
K
kexinzhao 已提交
73

C
caoying03 已提交
74 75
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.
K
kexinzhao 已提交
76 77

There are two cases for this operator:
C
caoying03 已提交
78
1. The shape of $Y$ is same with $X$;
79 80 81
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
   of size 1 for $Y$ will be ignored for the consideration of subsequence.

K
kexinzhao 已提交
82 83

For case 2:
84

C
caoying03 已提交
85 86
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
K
kexinzhao 已提交
87

88 89
If axis is -1, it is treated as axis=rank(X)-rank(Y).

90 91
For example
  .. code-block:: python
G
gongweibao 已提交
92

93 94 95 96 97
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
98
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
99

C
caoying03 已提交
100 101
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
102

G
gongweibao 已提交
103 104 105 106 107 108 109
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

110
  void Replace(std::string* src, std::string from, std::string to) {
G
gongweibao 已提交
111 112
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
113 114 115
    for (std::size_t pos = src->find(from); pos != std::string::npos;
         pos = src->find(from, pos + len_to)) {
      src->replace(pos, len_from, to);
G
gongweibao 已提交
116 117 118 119
    }
  }

  void SetComment(std::string name, std::string equation) {
120 121
    Replace(&comment_, "{name}", name);
    Replace(&comment_, "{equation}", equation);
G
gongweibao 已提交
122 123 124 125 126 127 128 129
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

130
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
131 132 133 134 135 136 137 138
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
139 140

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
141
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
142

Q
Qiao Longfei 已提交
143 144 145 146
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
147
    }
Q
Qiao Longfei 已提交
148 149
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
150 151 152 153 154
    }
  }
};
}  // namespace operators
}  // namespace paddle