sequence_expand_op.cu 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

D
dzhwinter 已提交
15
#include <algorithm>
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/sequence_ops/sequence_expand_op.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
W
wanghaoshuang 已提交
18

D
dzhwinter 已提交
19 20 21 22 23 24
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename T>
D
dzhwinter 已提交
25 26
__global__ void sequence_expand_kernel(const T* x_data, const size_t* x_lod,
                                       const size_t* ref_lod,
D
dzhwinter 已提交
27
                                       const size_t* offset,
D
dzhwinter 已提交
28 29 30 31 32 33 34 35 36
                                       const size_t lod_size,
                                       /* default=1,
                                          the instance length*/
                                       const int x_item_length, T* out_data) {
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;

  int x_item_count = x_lod[bid + 1] - x_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
D
dzhwinter 已提交
37
  int out_offset = static_cast<int>(offset[bid]);
D
dzhwinter 已提交
38 39 40 41 42 43 44 45
  int x_offset = x_lod[bid];
  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        out_data[(out_offset + tid_z * x_item_count + tid_y) * x_item_length +
                 tid_x] = x_data[(x_offset + tid_y) * x_item_length + tid_x];
      }
D
dzhwinter 已提交
46 47
    }
  }
D
dzhwinter 已提交
48
}
D
dzhwinter 已提交
49

D
dzhwinter 已提交
50
template <typename T>
D
dzhwinter 已提交
51 52 53 54 55 56
__global__ void sequence_expand_grad_kernel(
    const T* dout_data, const size_t* ref_lod, const size_t* dx_lod,
    const size_t* offset, const size_t lod_size,
    /* default=1,
       the instance length*/
    const int x_item_length, T* dx_data) {
D
dzhwinter 已提交
57 58 59 60
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;
  int x_item_count = dx_lod[bid + 1] - dx_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
D
dzhwinter 已提交
61
  int out_offset = static_cast<int>(offset[bid]);
D
dzhwinter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
  int x_offset = dx_lod[bid];

  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        platform::CudaAtomicAdd(
            &dx_data[(x_offset + tid_y) * x_item_length + tid_x],
            dout_data[(out_offset + tid_z * x_item_count + tid_y) *
                          x_item_length +
                      tid_x]);
      }
    }
D
dzhwinter 已提交
75 76 77
  }
}

D
dzhwinter 已提交
78 79
void GetOutputOffset(const framework::Vector<size_t>& x_lod,
                     const framework::Vector<size_t>& ref_lod,
D
dzhwinter 已提交
80
                     framework::Vector<size_t>* out_offset) {
D
dzhwinter 已提交
81 82 83
  size_t offset = 0;
  int lod_size = static_cast<int>(x_lod.size());
  for (int i = 0; i < static_cast<int>(x_lod.size()); ++i) {
D
"done"  
dzhwinter 已提交
84
    (*out_offset)[i] = offset;
D
dzhwinter 已提交
85 86 87 88 89 90
    if (i < lod_size - 1) {
      offset += (ref_lod[i + 1] - ref_lod[i]) * (x_lod[i + 1] - x_lod[i]);
    }
  }
}

D
dzhwinter 已提交
91
template <typename T>
D
dzhwinter 已提交
92
struct SequenceExpandFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
93 94 95 96 97
  void operator()(
      const platform::CUDADeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
98
    int x_item_length = x.numel() / x.dims()[0];
D
dzhwinter 已提交
99
    framework::Vector<size_t> out_offset(x_lod.size());
D
dzhwinter 已提交
100
    GetOutputOffset(x_lod, ref_lod, &out_offset);
D
dzhwinter 已提交
101

D
dzhwinter 已提交
102 103 104
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
105 106
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
107
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
108

D
dzhwinter 已提交
109
    sequence_expand_kernel<<<grid_size, block_size, 0, context.stream()>>>(
D
dzhwinter 已提交
110
        x.data<T>(), x_lod.CUDAData(context.GetPlace()),
D
dzhwinter 已提交
111 112
        ref_lod.CUDAData(context.GetPlace()),
        out_offset.CUDAData(context.GetPlace()), x_lod.size(), x_item_length,
D
dzhwinter 已提交
113
        out->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
114
  }
D
dzhwinter 已提交
115
};
D
dzhwinter 已提交
116

D
dzhwinter 已提交
117 118
template <typename T>
struct SequenceExpandGradFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
119
  void operator()(const platform::CUDADeviceContext& context,
D
dzhwinter 已提交
120 121 122 123
                  const LoDTensor& dout,
                  const framework::Vector<size_t>& x_lod, /*expand source lod*/
                  const framework::Vector<size_t>& ref_lod, /*expand based lod*/
                  LoDTensor* dx) {
D
dzhwinter 已提交
124
    int x_item_length = framework::product(dx->dims()) / dx->dims()[0];
D
dzhwinter 已提交
125
    framework::Vector<size_t> out_offset(x_lod.size());
D
dzhwinter 已提交
126
    GetOutputOffset(x_lod, ref_lod, &out_offset);
D
dzhwinter 已提交
127

D
dzhwinter 已提交
128 129 130
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
131 132
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
133
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
134 135
    sequence_expand_grad_kernel<<<grid_size, block_size, 0, context.stream()>>>(
        dout.data<T>(), ref_lod.CUDAData(context.GetPlace()),
D
dzhwinter 已提交
136 137
        x_lod.CUDAData(context.GetPlace()),
        out_offset.CUDAData(context.GetPlace()), ref_lod.size(), x_item_length,
D
dzhwinter 已提交
138
        dx->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
139 140
  }
};
D
dzhwinter 已提交
141 142 143 144

}  // namespace operators
}  // namespace paddle

W
wanghaoshuang 已提交
145
namespace ops = paddle::operators;
Q
QI JUN 已提交
146
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
147
    sequence_expand,
Y
yangyaming 已提交
148 149 150 151
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int64_t>);
Q
QI JUN 已提交
152
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
153
    sequence_expand_grad,
Y
yangyaming 已提交
154 155 156 157 158
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);