test_chunk_eval_op.py 9.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
G
guosheng 已提交
20 21


22
class Segment(object):
G
guosheng 已提交
23 24 25 26 27 28
    def __init__(self, chunk_type, start_idx, end_idx):
        self.chunk_type = chunk_type
        self.start_idx = start_idx
        self.end_idx = end_idx

    def __str__(self):
29 30
        return '(Segment: %s, %s, %s)' % (self.chunk_type, self.start_idx,
                                          self.end_idx)
G
guosheng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    __repr__ = __str__


class TestChunkEvalOp(OpTest):
    num_sequences = 5
    batch_size = 50

    def parse_scheme(self):
        if self.scheme == 'IOB':
            self.num_tag_types = 2
        elif self.scheme == 'IOE':
            self.num_tag_types = 2

    def fill_with_chunks(self, data, chunks):
        for chunk in chunks:
            if self.scheme == 'IOB':
                data[chunk.start_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.start_idx + 1:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                         self.num_tag_types - 1)
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1
                ) if chunk.start_idx < chunk.end_idx else data[chunk.start_idx]
            elif self.scheme == 'IOE':
                data[chunk.start_idx:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1)

    def rand_chunks(self, starts, num_chunks):
        if num_chunks < 0:
            num_chunks = np.random.randint(starts[-1])
        chunks = []
        # generate chunk beginnings
        chunk_begins = sorted(
            np.random.choice(
68
                list(range(starts[-1])), num_chunks, replace=False))
G
guosheng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        seq_chunk_begins = []
        begin_idx = 0
        # divide chunks into sequences
        for i in range(len(starts) - 1):
            tmp_chunk_begins = []
            while begin_idx < len(chunk_begins) and chunk_begins[
                    begin_idx] < starts[i + 1]:
                tmp_chunk_begins.append(chunk_begins[begin_idx])
                begin_idx += 1
            seq_chunk_begins.append(tmp_chunk_begins)
        # generate chunk ends
        chunk_ends = []
        for i in range(len(seq_chunk_begins)):
            for j in range(len(seq_chunk_begins[i])):
                low = seq_chunk_begins[i][j]
                high = seq_chunk_begins[i][j + 1] if j < len(seq_chunk_begins[
                    i]) - 1 else starts[i + 1]
                chunk_ends.append(np.random.randint(low, high))
        # generate chunks
        for chunk_pos in zip(chunk_begins, chunk_ends):
            chunk_type = np.random.randint(self.num_chunk_types)
90
            chunks.append(Segment(chunk_type, *chunk_pos))
G
guosheng 已提交
91 92 93 94 95 96 97
        return chunks

    def gen_chunks(self, infer, label, starts):
        chunks = self.rand_chunks(starts,
                                  self.num_infer_chunks + self.num_label_chunks
                                  - self.num_correct_chunks)
        correct_chunks = np.random.choice(
98
            list(range(len(chunks))), self.num_correct_chunks, replace=False)
G
guosheng 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        infer_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in correct_chunks],
            self.num_infer_chunks - self.num_correct_chunks,
            replace=False)
        infer_chunks = sorted(correct_chunks.tolist() + infer_chunks.tolist())
        label_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in infer_chunks],
            self.num_label_chunks - self.num_correct_chunks,
            replace=False)
        label_chunks = sorted(correct_chunks.tolist() + label_chunks.tolist())
        self.fill_with_chunks(infer, [chunks[idx] for idx in infer_chunks])
        self.fill_with_chunks(label, [chunks[idx] for idx in label_chunks])
        # exclude types in excluded_chunk_types
        if len(self.excluded_chunk_types) > 0:
            for idx in correct_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_correct_chunks -= 1
            for idx in infer_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_infer_chunks -= 1
            for idx in label_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_label_chunks -= 1
        return self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks

    def set_confs(self):
        # Use the IOB scheme and labels with 2 chunk types
        self.scheme = 'IOB'
        self.num_chunk_types = 2
        self.excluded_chunk_types = []
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 4, 5, 9

    def set_data(self):
Q
Qiao Longfei 已提交
139
        infer = np.zeros((self.batch_size, )).astype('int64')
G
guosheng 已提交
140 141 142
        infer.fill(self.num_chunk_types * self.num_tag_types)
        label = np.copy(infer)
        starts = np.random.choice(
143 144
            list(range(1, self.batch_size)),
            self.num_sequences - 1,
G
guosheng 已提交
145 146 147 148 149
            replace=False).tolist()
        starts.extend([0, self.batch_size])
        starts = sorted(starts)
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = self.gen_chunks(
            infer, label, starts)
150 151 152
        lod = []
        for i in range(len(starts) - 1):
            lod.append(starts[i + 1] - starts[i])
153
        self.set_input(infer, label, lod)
G
guosheng 已提交
154 155 156 157 158 159 160 161
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1 = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        self.outputs = {
162 163 164 165 166
            'Precision': np.asarray(
                [precision], dtype='float32'),
            'Recall': np.asarray(
                [recall], dtype='float32'),
            'F1-Score': np.asarray(
G
guosheng 已提交
167 168 169 170 171 172 173
                [f1], dtype='float32'),
            'NumInferChunks': np.asarray(
                [self.num_infer_chunks], dtype='int64'),
            'NumLabelChunks': np.asarray(
                [self.num_label_chunks], dtype='int64'),
            'NumCorrectChunks': np.asarray(
                [self.num_correct_chunks], dtype='int64')
G
guosheng 已提交
174 175
        }

176 177 178
    def set_input(self, infer, label, lod):
        self.inputs = {'Inference': (infer, [lod]), 'Label': (label, [lod])}

G
guosheng 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def setUp(self):
        self.op_type = 'chunk_eval'
        self.set_confs()
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestChunkEvalOpWithExclude(TestChunkEvalOp):
    def set_confs(self):
        # Use the IOE scheme and labels with 3 chunk types
        self.scheme = 'IOE'
        self.num_chunk_types = 3
        self.excluded_chunk_types = [1]
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 15, 18, 20


204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class TestChunkEvalOpWithTensorInput(TestChunkEvalOp):
    def set_input(self, infer, label, lod):
        max_len = np.max(lod)
        pad_infer = []
        pad_label = []
        start = 0
        for i in range(len(lod)):
            end = lod[i] + start
            pad_infer.append(
                np.pad(infer[start:end], (0, max_len - lod[i]),
                       'constant',
                       constant_values=(-1, )))
            pad_label.append(
                np.pad(label[start:end], (0, max_len - lod[i]),
                       'constant',
                       constant_values=(-1, )))
            start = end

        pad_infer = np.expand_dims(np.array(pad_infer, dtype='int64'), 2)
        pad_label = np.expand_dims(np.array(pad_label, dtype='int64'), 2)
        lod = np.array(lod, dtype='int64')
        self.inputs = {
            'Inference': pad_infer,
            'Label': pad_label,
            'SeqLength': lod
        }


G
guosheng 已提交
232 233
if __name__ == '__main__':
    unittest.main()