chunk_eval_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/chunk_eval_op.h"
16 17
#include <string>
#include <vector>
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

class ChunkEvalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Inference"),
                   "Input(Inference) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Precision"),
                   "Output(Precision) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Recall"),
                   "Output(Recall) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("F1-Score"),
                   "Output(F1-Score) of ChunkEvalOp should not be null.");
G
guosheng 已提交
37 38 39 40 41 42 43
    PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"),
                   "Output(NumInferChunks) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"),
                   "Output(NumLabelChunks) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("NumCorrectChunks"),
        "Output(NumCorrectChunks) of ChunkEvalOp should not be null.");
G
guosheng 已提交
44 45 46 47 48 49 50

    auto inference_dim = ctx->GetInputDim("Inference");
    auto label_dim = ctx->GetInputDim("Label");

    PADDLE_ENFORCE(inference_dim == label_dim,
                   "Inference's shape must be the same as Label's shape.");

51 52 53 54 55 56 57 58 59
    bool use_padding = ctx->HasInput("SeqLength");
    if (use_padding) {
      PADDLE_ENFORCE(inference_dim.size() == 3,
                     "when SeqLength is provided, Inference should be of dim 3 "
                     "(batch, bucket, 1)");
      auto seq_length_dim = ctx->GetInputDim("SeqLength");
      PADDLE_ENFORCE(seq_length_dim.size() == 1, "seq_length should be rank 1");
    }

G
guosheng 已提交
60 61 62
    ctx->SetOutputDim("Precision", {1});
    ctx->SetOutputDim("Recall", {1});
    ctx->SetOutputDim("F1-Score", {1});
G
guosheng 已提交
63 64 65
    ctx->SetOutputDim("NumInferChunks", {1});
    ctx->SetOutputDim("NumLabelChunks", {1});
    ctx->SetOutputDim("NumCorrectChunks", {1});
G
guosheng 已提交
66 67
  }

68
 protected:
69
  framework::OpKernelType GetExpectedKernelType(
G
guosheng 已提交
70
      const framework::ExecutionContext &ctx) const override {
71
    return framework::OpKernelType(framework::proto::VarType::FP32,
72
                                   platform::CPUPlace());
G
guosheng 已提交
73 74 75 76 77
  }
};

class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() override {
G
guosheng 已提交
79
    AddInput("Inference",
Q
Qiao Longfei 已提交
80 81
             "(Tensor, default: Tensor<int64_t>). "
             "Predictions from the network.");
82
    AddInput("Label",
Q
Qiao Longfei 已提交
83
             "(Tensor, default: Tensor<int64_t>). The true tag sequences.");
84 85 86 87
    AddInput("SeqLength",
             "(Tensor, default: Tensor<int64_t>). The length of each sequence, "
             "used when Inference and Label are Tensor type .")
        .AsDispensable();
88 89 90
    AddOutput("Precision",
              "(float). The evaluated precision (called positive predictive "
              "value) of chunks on the given mini-batch.");
G
guosheng 已提交
91
    AddOutput("Recall",
92 93
              "(float). The evaluated recall (true positive rate or "
              "sensitivity) of chunks on the given mini-batch.");
G
guosheng 已提交
94
    AddOutput("F1-Score",
95
              "(float). The evaluated F1-Score on the given mini-batch.");
96 97 98
    AddOutput("NumInferChunks",
              "(int64_t). The number of chunks in Inference on the given "
              "mini-batch.");
G
guosheng 已提交
99
    AddOutput(
100 101 102 103 104 105
        "NumLabelChunks",
        "(int64_t). The number of chunks in Label on the given mini-batch.");
    AddOutput(
        "NumCorrectChunks",
        "(int64_t). The number of chunks both in Inference and Label on the "
        "given mini-batch.");
106
    AddAttr<int>("num_chunk_types",
Y
yi.wu 已提交
107 108 109 110 111 112
                 "The number of chunk type. See the description for details.");
    AddAttr<std::string>("chunk_scheme",
                         "The labeling scheme indicating "
                         "how to encode the chunks. Must be IOB, IOE, IOBES or "
                         "plain. See the description"
                         "for details.")
G
guosheng 已提交
113
        .SetDefault("IOB");
114
    AddAttr<std::vector<int>>("excluded_chunk_types",
Y
yi.wu 已提交
115
                              "A list including chunk type ids "
116
                              "indicating chunk types that are not counted. "
Y
yi.wu 已提交
117
                              "See the description for details.")
G
guosheng 已提交
118 119
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(
Y
yangyaming 已提交
120
For some basics of chunking, please refer to
Y
yi.wu 已提交
121
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
122

Y
yi.wu 已提交
123
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
Y
yangyaming 已提交
124
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
125
Here is a NER example of labeling for these tagging schemes:
Y
yi.wu 已提交
126 127 128 129 130 131
   
          Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
   IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
   IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
   IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
   IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
132

Q
Qiao Longfei 已提交
133
There are three chunk types(named entity types) including PER(person), ORG(organization)
134 135
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

Y
yangyaming 已提交
136 137 138
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
Y
yi.wu 已提交
139 140 141
   
   tag_type = label % num_tag_type
   chunk_type = label / num_tag_type
142

Y
yangyaming 已提交
143
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
144
is the num of chunk types, and `tag_type` get its value from the following table.
Y
yi.wu 已提交
145 146 147 148 149 150
   
   Scheme Begin Inside End   Single
    plain   0     -      -     -
    IOB     0     1      -     -
    IOE     -     0      1     -
    IOBES   0     1      2     3
G
guosheng 已提交
151

Y
yangyaming 已提交
152
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
153
PER and LOC. To satisfy the above equations, the label map can be like this:
G
guosheng 已提交
154

Y
yi.wu 已提交
155 156 157 158 159 160 161
   B-ORG  0
   I-ORG  1
   B-PER  2
   I-PER  3
   B-LOC  4
   I-LOC  5
   O      6
G
guosheng 已提交
162

Y
yi.wu 已提交
163
It's not hard to verify the equations noting that the num of chunk types
Y
yangyaming 已提交
164 165
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
166
I-LOC is 2, which consistent with the results from the equations.
G
guosheng 已提交
167 168 169 170 171 172 173 174 175 176 177 178
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp,
                             ops::ChunkEvalOpMaker);
REGISTER_OP_CPU_KERNEL(chunk_eval,
                       ops::ChunkEvalKernel<paddle::platform::CPUPlace, float>);