axpy_handler.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/onednn/axpy_handler.h"

#include <cinttypes>
#include <memory>
#include <string>
#include <vector>

#include "paddle/phi/backends/onednn/onednn_helper.h"

namespace phi {
namespace funcs {

template <typename T>
class AXPYHandler {
 public:
  AXPYHandler(const dnnl::engine onednn_engine, int n, float alpha) {
    OneDNNContext::tls().log_lib_version();
    auto md = dnnl::memory::desc(
        {n}, OneDNNGetDataType<T>(), dnnl::memory::format_tag::x);
    src_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
    dst_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
    dnnl::primitive_attr reorder_attr;
    dnnl::post_ops post_operations;
    if (alpha != 1.f) {
      std::vector<float> scales(1, alpha);
      reorder_attr.set_output_scales(0, scales);
    }
    post_operations.append_sum(1.0f);

    reorder_attr.set_post_ops(post_operations);
    reorder_p_ = dnnl::reorder(src_mem_, dst_mem_, reorder_attr);
  }

  dnnl::memory &AcquireSrcMemory(const T *x) {
    src_mem_.set_data_handle(to_void_cast<T>(x));
    return src_mem_;
  }

  dnnl::memory &AcquireDstMemory(T *y) {
    dst_mem_.set_data_handle(y);
    return dst_mem_;
  }

  const dnnl::reorder &AcquireReorder() { return reorder_p_; }

 private:
  dnnl::memory src_mem_;
  dnnl::memory dst_mem_;
  dnnl::reorder reorder_p_;
};

template class AXPYHandler<float>;
template class AXPYHandler<phi::dtype::bfloat16>;

template <typename T>
static void naive_axpy(int n, T alpha, const T *x, T *y) {
  while (n-- > 0) {
    *y += alpha * *x;
    ++y;
    ++x;
  }
}

template <typename T>
class OneDNNAXPYHandler<T>::Impl {
 public:
  Impl(int64_t n, T alpha, const dnnl::engine onednn_engine);
  void operator()(const T *x, T *y);

 private:
  std::unique_ptr<AXPYHandler<T>> handler_;
  int64_t n_;
  T alpha_;
};

template <typename T>
OneDNNAXPYHandler<T>::Impl::Impl(int64_t n,
                                 T alpha,
                                 const dnnl::engine onednn_engine)
    : n_{n}, alpha_{alpha} {
  handler_ = std::make_unique<AXPYHandler<T>>(
      onednn_engine, n, static_cast<float>(alpha));
}

template <typename T>
void OneDNNAXPYHandler<T>::Impl::operator()(const T *x, T *y) {
  if (this->n_ < 100) {
    naive_axpy(this->n_, this->alpha_, x, y);
    return;
  }

  auto &reorder_src_mem_p = handler_->AcquireSrcMemory(x);
  auto &reorder_dst_mem_p = handler_->AcquireDstMemory(y);
  auto reorder_p = handler_->AcquireReorder();
  auto &astream = OneDNNContext::tls().get_stream();
  reorder_p.execute(astream, reorder_src_mem_p, reorder_dst_mem_p);
  astream.wait();
}

template <typename T>
OneDNNAXPYHandler<T>::OneDNNAXPYHandler(int64_t n,
                                        T alpha,
                                        const dnnl::engine onednn_engine)
    : pimpl_{new Impl{n, alpha, onednn_engine},
             [](Impl *impl) { delete impl; }} {
  VLOG(4) << "[OneDNN] OneDNNAXPYHandler<" << typeid(T).name() << ">, "
          << "n: " << n << ", alpha: " << alpha;
}

template <typename T>
void OneDNNAXPYHandler<T>::operator()(const T *x, T *y) {
  pimpl_->operator()(x, y);
}

template class OneDNNAXPYHandler<float>;
template class OneDNNAXPYHandler<dtype::bfloat16>;

}  // namespace funcs
}  // namespace phi