svd_grad_kernel_impl.h 6.8 KB
Newer Older
X
xiongkun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/diag_kernel.h"
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/slice_kernel.h"

namespace phi {

template <class T, class Context>
static DenseTensor Fill(const Context& ctx,
                        std::vector<int> shape,
                        float fill_value) {
  DenseTensor ret;
  ret.Resize(make_ddim(shape));
  ctx.template Alloc<T>(&ret);
  funcs::SetConstant<Context, T>()(ctx, &ret, T(fill_value));
  return ret;
}

template <class T, class Context>
static DenseTensor Eye(const Context& dev_ctx, int n) {
  auto output = Fill<T, Context>(dev_ctx, {n}, 1);
  auto ret = Diag<T, Context>(dev_ctx, output, 0, 0);
  return ret;
}

template <class T, class Context>
static DenseTensor Infinits(const Context& ctx, std::vector<int> shape) {
  auto value = static_cast<T>(std::numeric_limits<double>::infinity());
  return Fill<T, Context>(ctx, shape, value);
}

static DenseTensor Unsqueeze(const DenseTensor& x, int axis = 0) {
  // don't copy data, only change the dims
  DenseTensor out;
  out.ShareDataWith(x);
  std::vector<int> out_shape = phi::vectorize<int>(x.dims());
  if (axis >= 0) {
    auto index = (out_shape.begin() + axis);
    out_shape.insert(index, 1);
  } else if (axis < 0) {
    auto index = (out_shape.end() + axis + 1);
    out_shape.insert(index, 1);
  }
  out.Resize(phi::make_ddim(out_shape));
  return out;
}

template <typename T, typename Context>
void SvdGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& u,
                   const DenseTensor& vh,
                   const DenseTensor& s,
74 75 76
                   const paddle::optional<DenseTensor>& u_grad,
                   const paddle::optional<DenseTensor>& vh_grad,
                   const paddle::optional<DenseTensor>& s_grad,
X
xiongkun 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
                   bool full_matrices,
                   DenseTensor* x_grad) {
  const auto& dX = *x_grad;
  int m = dX.dims()[dX.dims().size() - 2];
  int n = dX.dims()[dX.dims().size() - 1];
  int k = s.dims()[s.dims().size() - 1];
  DenseTensor U, VH, dU, dV, dVH;
  if (full_matrices) {
    // if full_matrices is set, slice the U and VT to k columns
    U = SliceKernel<T, Context>(
        dev_ctx, u, {u.dims().size() - 1}, {0}, {k}, {1}, {});
    VH = SliceKernel<T, Context>(
        dev_ctx, vh, {vh.dims().size() - 2}, {0}, {k}, {1}, {});
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    if (u_grad.get_ptr() != nullptr) {
      dU = SliceKernel<T, Context>(dev_ctx,
                                   *(u_grad.get_ptr()),
                                   {u.dims().size() - 1},
                                   {0},
                                   {k},
                                   {1},
                                   {});
    }
    if (vh_grad.get_ptr() != nullptr) {
      dVH = SliceKernel<T, Context>(dev_ctx,
                                    *(vh_grad.get_ptr()),
                                    {vh.dims().size() - 2},
                                    {0},
                                    {k},
                                    {1},
                                    {});
    }
X
xiongkun 已提交
108 109 110
  } else {
    U = u;
    VH = vh;
111 112 113 114 115 116
    if (u_grad.get_ptr() != nullptr) {
      dU = *(u_grad.get_ptr());
    }
    if (vh_grad.get_ptr() != nullptr) {
      dVH = *(vh_grad.get_ptr());
    }
X
xiongkun 已提交
117 118 119 120 121 122 123 124 125 126
  }
  auto s_inverse = Pow<T, Context>(dev_ctx, s, -1);
  auto s_square = Pow<T, Context>(dev_ctx, s, 2);
  auto F = Subtract<T, Context>(
      dev_ctx, Unsqueeze(s_square, -2), Unsqueeze(s_square, -1));
  F = Add<T, Context>(
      dev_ctx,
      F,
      Diag<T, Context>(dev_ctx, Infinits<T, Context>(dev_ctx, {k}), 0, 0));
  F = Pow<T, Context>(dev_ctx, F, -1);
127 128 129
  DenseTensor sigma_term = Fill<T, Context>(dev_ctx, {1}, 0.0);
  DenseTensor u_term = Fill<T, Context>(dev_ctx, {1}, 0.0);
  DenseTensor v_term = Fill<T, Context>(dev_ctx, {1}, 0.0);
X
xiongkun 已提交
130

131 132
  if (s_grad.get_ptr() != nullptr) {
    const DenseTensor& gS = *(s_grad.get_ptr());
X
xiongkun 已提交
133 134 135 136
    sigma_term = Multiply<T, Context>(dev_ctx, Unsqueeze(gS, -2), U);
    sigma_term = Matmul<T, Context>(dev_ctx, sigma_term, VH);
  }

137
  if (u_grad.get_ptr() != nullptr) {
X
xiongkun 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    auto UTG = Matmul<T, Context>(dev_ctx, U, dU, true, false);
    auto GTU = Matmul<T, Context>(dev_ctx, dU, U, true, false);
    u_term = Multiply<T, Context>(
        dev_ctx,
        Multiply<T, Context>(
            dev_ctx, Subtract<T, Context>(dev_ctx, UTG, GTU), F),
        Unsqueeze(s, -2));
    u_term = Matmul<T, Context>(dev_ctx, U, u_term);
    if (m > k) {
      auto project =
          Subtract<T, Context>(dev_ctx,
                               Eye<T, Context>(dev_ctx, m),
                               Matmul<T, Context>(dev_ctx, U, U, false, true));
      u_term = Add<T, Context>(
          dev_ctx,
          u_term,
          Multiply<T, Context>(dev_ctx,
                               Matmul<T, Context>(dev_ctx, project, dU),
                               Unsqueeze(s_inverse, -2)));
    }
    u_term = Matmul<T, Context>(dev_ctx, u_term, VH);
  }
160
  if (vh_grad.get_ptr() != nullptr) {
X
xiongkun 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    auto UTG = Matmul<T, Context>(dev_ctx, VH, dVH, false, true);
    auto GTU = Matmul<T, Context>(dev_ctx, dVH, VH, false, true);
    v_term = Multiply<T, Context>(
        dev_ctx,
        Matmul<T, Context>(
            dev_ctx,
            Multiply<T, Context>(
                dev_ctx, Subtract<T, Context>(dev_ctx, UTG, GTU), F),
            VH),
        Unsqueeze(s, -1));
    if (n > k) {
      auto project = Subtract<T, Context>(
          dev_ctx,
          Eye<T, Context>(dev_ctx, n),
          Matmul<T, Context>(dev_ctx, VH, VH, true, false));
      v_term = Add<T, Context>(
          dev_ctx,
          v_term,
          Multiply<T, Context>(dev_ctx,
                               Matmul<T, Context>(dev_ctx, dVH, project),
                               Unsqueeze(s_inverse, -1)));
    }
    v_term = Matmul<T, Context>(dev_ctx, U, v_term);
  }

  *x_grad = Add<T, Context>(
      dev_ctx, Add<T, Context>(dev_ctx, u_term, sigma_term), v_term);
}

}  // namespace phi