test_desc_clone.py 10.3 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
gongweibao 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
M
minqiyang 已提交
30
import six
G
gongweibao 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
M
minqiyang 已提交
59 60
    param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
                   ] + [SIZE]
G
gongweibao 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size)
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


def operator_equal(a, b):
113
    if a.__str__() != b.__str__():
G
gongweibao 已提交
114 115
        raise ValueError("In operator_equal not equal\n")

M
minqiyang 已提交
116
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
117 118 119 120 121
        if isinstance(v, fluid.framework.Program) or \
                isinstance(v, fluid.framework.Block):
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
122
            continue
G
gongweibao 已提交
123 124

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
125 126
            v0 = sorted(list(six.iteritems(v)), key=lambda x: x[0])
            v1 = sorted(list(six.iteritems(b.__dict__[k])), key=lambda x: x[0])
G
gongweibao 已提交
127 128 129 130 131 132 133 134 135 136 137

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

        elif (v != b.__dict__[k]):
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
M
minqiyang 已提交
138
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
139 140 141 142 143
        if isinstance(v, core.ProgramDesc) or isinstance(
                v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
            continue

        elif k == "ops":
M
minqiyang 已提交
144
            assert (len(a.ops) == len(b.ops))
G
gongweibao 已提交
145 146 147 148 149
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
150 151 152
            for key, value in six.iteritems(v):
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
153 154 155 156 157 158 159 160

        elif (v != b.__dict__[k]):
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
M
minqiyang 已提交
161
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
                    raise ValueError("In operator_equal not equal:{0}\n".format(
                        k))
                    return False
            assert (len(a.blocks) == len(b.blocks))

        elif (v != b.__dict__[k]):
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


class TestDistMnist(unittest.TestCase):
    def test_desc_clone(self):
        get_model(batch_size=20)

        pserver_endpoints = "127.0.0.1:9123"
        trainers = 1
        current_endpoint = "127.0.0.1:9123"
        t = get_transpiler(0,
                           fluid.default_main_program(), pserver_endpoints,
                           trainers)

        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        main = pserver_prog.clone()
        startup = startup_prog.clone()
        self.assertTrue(program_equal(main, pserver_prog))
        self.assertTrue(program_equal(startup, startup_prog))


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
                label=fluid.layers.data(
                    name='label', shape=[1], dtype='int64'))
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        self.assertEqual(
            test_program.block(0).var(hidden2.name).stop_gradient, False)


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
                label=fluid.layers.data(
                    name='label', shape=[1], dtype='int64'))
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
                label=fluid.layers.data(
                    name='label', shape=[1], dtype='int64'))
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertRaises(ValueError, train_program._copy_data_info_from,
                          startup_program)
        self.assertRaises(TypeError, train_program._copy_data_info_from,
                          startup_program.block(0))


G
gongweibao 已提交
295 296
if __name__ == "__main__":
    unittest.main()