test_basic_gru_api.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_gru
from paddle.fluid.executor import Executor
from paddle.fluid import framework

import numpy as np

28 29
np.set_seed(123)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))


def tanh(x):
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.


def gru_np(input,
           init_h,
           hidden_size,
           gate_weight,
           gate_bias,
           candidate_weight,
           candidate_bias,
           num_layers=1,
           batch_first=False,
           is_bidirect=False,
           sequence_length=None):
59

60 61 62 63 64 65 66 67 68 69
    def step(step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b):
        concat_1 = np.concatenate([step_in, pre_hidden], 1)

        gate_input = np.matmul(concat_1, gate_w)
        gate_input += gate_b
        gate_input = sigmoid(gate_input)
        r, u = np.split(gate_input, indices_or_sections=2, axis=1)

        r_hidden = r * pre_hidden

70 71
        candidate = np.matmul(np.concatenate([step_in, r_hidden], 1),
                              candidate_w)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

        candidate += candidate_b
        c = tanh(candidate)

        new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden

    if batch_first:
        input = np.tranpose(input, [1, 0, 2])

    batch_size = input.shape[1]
    mask = None
    if sequence_length is not None:
        max_seq_len = input.shape[0]

        mask = np.zeros([batch_size, max_seq_len])

        for i, len in enumerate(sequence_length):
            mask[i, :len] = 1.0

        mask = np.transpose(mask, [1, 0])

    direc_num = 1
    if is_bidirect:
        direc_num = 2
    if init_h:
99 100
        init_h = np.reshape(init_h,
                            shape=[num_layers, direc_num, -1, hidden_size])
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    else:
        init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])

    def get_single_direction_output(rnn_input, mask=None, direc_index=0):
        seq_len = rnn_input.shape[0]

        output = []
        # init pre hidden
        pre_hidden_array = []
        for i in range(num_layers):
            pre_hidden_array.append(init_h[i, direc_index])

        for i in range(seq_len):
            step_input = rnn_input[i]

            if mask is not None:
                step_mask = mask[i]
                step_mask = np.reshape(step_mask, [-1, 1])

            for i in range(num_layers):
                new_hidden = step(
                    step_input, pre_hidden_array[i],
                    gate_weight[direc_index * num_layers + i],
                    gate_bias[direc_index * num_layers + i],
                    candidate_weight[direc_index * num_layers + i],
                    candidate_bias[direc_index * num_layers + i])

                if mask is not None:
                    new_hidden = new_hidden * step_mask + (
                        1 - step_mask) * pre_hidden_array[i]

                pre_hidden_array[i] = new_hidden

                step_input = new_hidden
            output.append(step_input)
        rnn_out = np.concatenate(output, 0)
        rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])

        last_hidden_out = np.concatenate(pre_hidden_array, 0)
        last_hidden_out = np.reshape(last_hidden_out,
                                     [num_layers, -1, hidden_size])

        return rnn_out, last_hidden_out

145 146 147
    fw_rnn_out, fw_last_hidden = get_single_direction_output(input,
                                                             mask,
                                                             direc_index=0)
148 149 150 151 152 153 154

    if is_bidirect:
        bw_input = input[::-1]
        bw_mask = None
        if mask is not None:
            bw_mask = mask[::-1]

155 156 157
        bw_rnn_out, bw_last_hidden = get_single_direction_output(bw_input,
                                                                 bw_mask,
                                                                 direc_index=1)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

        bw_rnn_out = bw_rnn_out[::-1]

        rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
        last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
        last_hidden = np.reshape(last_hidden,
                                 [num_layers * direc_num, -1, hidden_size])

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden
    else:
        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden


class TestBasicGRUApi(unittest.TestCase):
181

182 183 184 185 186 187 188 189 190
    def setUp(self):
        self.hidden_size = 10
        self.batch_size = 5
        self.seq_len = 6
        self.num_layers = 2
        self.is_bidirect = True
        self.batch_first = False

    def test_run(self):
191 192 193 194 195 196
        x = layers.data(name='x',
                        shape=[-1, self.batch_size, self.hidden_size],
                        dtype='float32')
        sequence_length = layers.data(name="sequence_length",
                                      shape=[-1],
                                      dtype='float32')
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

        rnn_out, last_hidden = basic_gru( x, None, self.hidden_size, num_layers=self.num_layers, \
                batch_first = self.batch_first, bidirectional=self.is_bidirect, sequence_length=sequence_length )

        last_hidden.persisbale = True
        rnn_out.persisbale = True

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        exe = Executor(place)
        exe.run(framework.default_startup_program())

        param_list = fluid.default_main_program().block(0).all_parameters()

        # process weight and bias
        gate_weight = []
        gate_bias = []
        candidate_weight = []
        candidate_bias = []

        for i in range(self.num_layers):
            gate_w_name = "basic_gru_layers_" + str(i) + "/BasicGRUUnit_0.w_0"
            gate_b_name = "basic_gru_layers_" + str(i) + "/BasicGRUUnit_0.b_0"
            candidate_w_name = "basic_gru_layers_" + str(
                i) + "/BasicGRUUnit_0.w_1"
            candidate_b_name = "basic_gru_layers_" + str(
                i) + "/BasicGRUUnit_0.b_1"

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            gate_w = np.array(
                fluid.global_scope().find_var(gate_w_name).get_tensor())
            gate_w = np.random.uniform(-0.1, 0.1,
                                       size=gate_w.shape).astype('float32')
            fluid.global_scope().find_var(gate_w_name).get_tensor().set(
                gate_w, place)

            gate_b = np.array(
                fluid.global_scope().find_var(gate_b_name).get_tensor())
            gate_b = np.random.uniform(-0.1, 0.1,
                                       size=gate_b.shape).astype('float32')
            fluid.global_scope().find_var(gate_b_name).get_tensor().set(
                gate_b, place)

            candidate_w = np.array(
                fluid.global_scope().find_var(candidate_w_name).get_tensor())
244 245 246 247 248
            candidate_w = np.random.uniform(
                -0.1, 0.1, size=candidate_w.shape).astype('float32')
            fluid.global_scope().find_var(candidate_w_name).get_tensor().set(
                candidate_w, place)

249 250
            candidate_b = np.array(
                fluid.global_scope().find_var(candidate_b_name).get_tensor())
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
            candidate_b = np.random.uniform(
                -0.1, 0.1, size=candidate_b.shape).astype('float32')
            fluid.global_scope().find_var(candidate_b_name).get_tensor().set(
                candidate_b, place)

            gate_weight.append(gate_w)
            gate_bias.append(gate_b)
            candidate_weight.append(candidate_w)
            candidate_bias.append(candidate_b)

        if self.is_bidirect:
            for i in range(self.num_layers):
                gate_w_name = "basic_gru_reverse_layers_" + str(
                    i) + "/BasicGRUUnit_0.w_0"
                gate_b_name = "basic_gru_reverse_layers_" + str(
                    i) + "/BasicGRUUnit_0.b_0"
                candidate_w_name = "basic_gru_reverse_layers_" + str(
                    i) + "/BasicGRUUnit_0.w_1"
                candidate_b_name = "basic_gru_reverse_layers_" + str(
                    i) + "/BasicGRUUnit_0.b_1"

272 273 274 275
                gate_w = np.array(
                    fluid.global_scope().find_var(gate_w_name).get_tensor())
                gate_w = np.random.uniform(-0.1, 0.1,
                                           size=gate_w.shape).astype('float32')
276 277 278
                fluid.global_scope().find_var(gate_w_name).get_tensor().set(
                    gate_w, place)

279 280 281 282
                gate_b = np.array(
                    fluid.global_scope().find_var(gate_b_name).get_tensor())
                gate_b = np.random.uniform(-0.1, 0.1,
                                           size=gate_b.shape).astype('float32')
283 284 285 286 287 288 289
                fluid.global_scope().find_var(gate_b_name).get_tensor().set(
                    gate_b, place)

                candidate_w = np.array(fluid.global_scope().find_var(
                    candidate_w_name).get_tensor())
                candidate_w = np.random.uniform(
                    -0.1, 0.1, size=candidate_w.shape).astype('float32')
290 291
                fluid.global_scope().find_var(
                    candidate_w_name).get_tensor().set(candidate_w, place)
292 293 294 295 296

                candidate_b = np.array(fluid.global_scope().find_var(
                    candidate_b_name).get_tensor())
                candidate_b = np.random.uniform(
                    -0.1, 0.1, size=candidate_b.shape).astype('float32')
297 298
                fluid.global_scope().find_var(
                    candidate_b_name).get_tensor().set(candidate_b, place)
299 300 301 302 303 304

                gate_weight.append(gate_w)
                gate_bias.append(gate_b)
                candidate_weight.append(candidate_w)
                candidate_bias.append(candidate_b)

305 306 307
        step_input_np = np.random.uniform(
            -0.1, 0.1,
            (self.seq_len, self.batch_size, self.hidden_size)).astype('float32')
308 309 310 311
        sequence_length_np = np.random.randint(
            self.seq_len // 2, self.seq_len,
            size=(self.batch_size)).astype('int64')

312 313 314 315 316
        out = exe.run(feed={
            'x': step_input_np,
            'sequence_length': sequence_length_np
        },
                      fetch_list=[rnn_out, last_hidden])
317 318 319 320

        api_rnn_out = out[0]
        api_last_hidden = out[1]

321 322 323 324 325 326 327 328 329 330 331
        np_out = gru_np(step_input_np,
                        None,
                        self.hidden_size,
                        gate_weight,
                        gate_bias,
                        candidate_weight,
                        candidate_bias,
                        num_layers=self.num_layers,
                        batch_first=self.batch_first,
                        is_bidirect=self.is_bidirect,
                        sequence_length=sequence_length_np)
332 333 334 335

        self.assertTrue(np.allclose(api_rnn_out, np_out[0], rtol=1e-4, atol=0))

        self.assertTrue(
336
            np.allclose(api_last_hidden, np_out[1], rtol=1e-4, atol=0))
337 338 339 340


if __name__ == '__main__':
    unittest.main()