ExpandConvLayer.cpp 3.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvLayer.h"

namespace paddle {

REGISTER_LAYER(exconv, ExpandConvLayer);

bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
27
  ConvBaseLayerCpu::init(layerMap, parameterMap);
Z
zhangjinchao01 已提交
28 29 30
  return true;
}

31
size_t ExpandConvLayer::getOutputSize() {
Z
zhangjinchao01 已提交
32
  CHECK_NE(inputLayers_.size(), 0UL);
33
  size_t layerSize = ConvBaseLayer::calOutputSize();
Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  subN_.clear();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    subN_.push_back(outputH_[i] * outputW_[i]);
  }
  return layerSize;
}

void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  /* note: one sample correspond to one colum, and the
   *   transOutValue correspond sample to one row */
  int batchSize = inputLayers_[0]->getOutputValue()->getWidth();
  batchSize = inputLayers_[0]->getOutputValue()->getHeight();
49
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
50 51 52 53 54 55 56

  MatrixPtr image = nullptr;
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    LayerPtr prevLayer = getPrev(i);
    image = prevLayer->getOutputValue();
    for (size_t off = 0; off < image->getHeight(); off++) {
      REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str());
57
      expandFwdOnce(image, getOutputValue(), i, off);
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    }
  }
  /* add the bias-vector */
  if (biases_.get() != NULL) {
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}


void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    /* First, calculate the input layers error */
86 87 88
    if (NULL != getPrev(i)->getOutputGrad()) {
      bpropActs(outGrad, getPrev(i)->getOutputGrad(), i);
    }
Z
zhangjinchao01 已提交
89 90
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
91
      bpropWeights(getPrev(i)->getOutputValue(), outGrad, i);
Z
zhangjinchao01 已提交
92 93 94 95 96 97 98
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle