conv_op.cc 14.4 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
33
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44 45
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
46

Y
Yang Yu 已提交
47
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
48
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
49
                    "channels * groups.");
F
fengjiayi 已提交
50

C
chengduoZH 已提交
51
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
52
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
53 54 55
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
56
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
                           (dilations[i] * (filter_dims[i + 2] - 1) + 1) >
                       0,
                   "Due to the settings of paddings, filter_dims and "
                   "dilations, the output size is less than 0, please check "
                   "again.");
C
chengduoZH 已提交
63
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
64
                                      dilations[i], paddings[i], strides[i]));
C
chengduoZH 已提交
65
  }
66
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
67
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
68 69
}

70 71 72
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
73 74 75
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
76 77 78 79 80 81 82 83 84 85 86 87 88 89
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

90
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
91 92 93
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
94 95 96 97
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
98
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
99
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
100 101
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
102 103
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
104 105
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
106 107
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
108 109 110 111
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
112
      .SetDefault({1, 1});
C
chengduoZH 已提交
113 114 115 116
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
117 118 119
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
120
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
121 122 123 124
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
125
      .SetDefault(1);
C
chengduoZH 已提交
126
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
127 128
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
129
                            "convolution operator.")
C
chengduoZH 已提交
130
      .SetDefault({1, 1});
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
chengduoZH 已提交
151
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
152 153
Convolution Operator.

C
chengduoZH 已提交
154
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
155
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
156
parameters is checked in the infer-shape.
C
chengduoZH 已提交
157
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
158
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
159 160 161 162 163 164
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
165 166 167 168
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
169 170
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
171
  Output:
C
chengduoZH 已提交
172 173 174 175 176 177
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
178
)DOC");
C
chengduoZH 已提交
179 180
}

181
Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
182 183 184
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
185
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
186
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
187 188 189
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
190
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
191
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
192 193
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
194 195 196
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
197 198
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
199
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
200
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
201 202 203 204
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
205
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
206 207 208 209
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
210 211 212
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
213
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
214 215 216 217
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
218
      .SetDefault(1);
C
chengduoZH 已提交
219
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
220 221
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
222
                            "convolution operator.")
C
chengduoZH 已提交
223
      .SetDefault({1, 1, 1});
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
fix doc  
chengduoZH 已提交
243

C
chengduoZH 已提交
244
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
245 246
Convolution3D Operator.

C
chengduoZH 已提交
247
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
248
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
249
parameters is checked in the infer-shape.
C
chengduoZH 已提交
250
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
251
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
252 253 254 255 256 257
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
258 259 260 261
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
262 263
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
264
  Output:
C
chengduoZH 已提交
265 266 267 268 269 270 271
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
272 273 274
)DOC");
}

C
chengduoZH 已提交
275 276 277 278 279 280 281 282 283 284 285
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

286 287 288
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
289 290 291
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
292 293 294 295 296 297 298 299 300 301 302 303 304 305
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
306 307 308 309
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
310 311 312 313 314 315
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
316 317 318 319 320 321
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
322 323

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
324 325 326 327 328 329
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);