analyzer_ernie_tester.cc 6.7 KB
Newer Older
G
GaoWei8 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

using paddle::PaddleTensor;

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

  tensors->clear();
  tensors->reserve(4);

  int i = 0;
94
  auto input_name = FLAGS_ernie_large ? "eval_placeholder_" : "placeholder_";
G
GaoWei8 已提交
95 96 97
  for (; i < 3; i++) {
    paddle::PaddleTensor temp;
    ParseTensor<int64_t>(fields[i], &temp);
98
    temp.name = input_name + std::to_string(i);
G
GaoWei8 已提交
99 100 101 102 103
    tensors->push_back(temp);
  }

  // input_mask
  paddle::PaddleTensor input_mask;
104 105
  ParseTensor<float>(fields[i], &input_mask);
  input_mask.name = input_name + std::to_string(i);
G
GaoWei8 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  tensors->push_back(input_mask);

  return true;
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_infer_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_infer_data);
  std::string line;
  int sample = 0;

  // The unit-test dataset only have 10 samples, each sample have 5 feeds.
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
    ParseLine(line, &feed_data);
    inputs->push_back(std::move(feed_data));
    sample++;
    if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
  }
  LOG(INFO) << "number of samples: " << sample;
  return true;
}

void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false,
               bool use_gpu = false) {
  cfg->SetModel(FLAGS_infer_model);
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
  if (use_gpu) {
    cfg->EnableUseGpu(100, 0);
  } else {
    cfg->DisableGpu();
  }
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}

void profile(bool use_mkldnn = false, bool use_gpu = false) {
  AnalysisConfig config;
  SetConfig(&config, use_mkldnn, use_gpu);

  std::vector<std::vector<PaddleTensor>> outputs;
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
                 inputs, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_ernie, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, profile_mkldnn) { profile(true, false); }
#endif

// Check the model by gpu
#ifdef PADDLE_WITH_CUDA
TEST(Analyzer_ernie, profile_gpu) { profile(false, true); }
#endif

// Check the fuse status
TEST(Analyzer_Ernie, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  LOG(INFO) << "num_ops: " << num_ops;
181 182 183 184 185 186 187
  if (FLAGS_ernie_large) {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 146);
    EXPECT_EQ(num_ops, 859);
  } else {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 74);
    EXPECT_EQ(num_ops, 295);
  }
G
GaoWei8 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
}

// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
  AnalysisConfig cfg;
  SetConfig(&cfg, use_mkldnn, false);

  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}

TEST(Analyzer_ernie, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

// Compare Deterministic result
TEST(Analyzer_Ernie, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// Compare results
TEST(Analyzer_Ernie, compare_results) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);
    auto outputs_size = outputs.front().data.length() / (sizeof(float));
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j],
                  static_cast<float *>(outputs[0].data.data())[j],
                  FLAGS_accuracy);
    }
  }
}

}  // namespace inference
}  // namespace paddle