test_if_else_op.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
import paddle.fluid.layers as layers
17
from paddle.fluid.framework import Program, program_guard
18 19 20
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22 23 24 25
from paddle.fluid.layers.control_flow import split_lod_tensor
from paddle.fluid.layers.control_flow import merge_lod_tensor
from paddle.fluid.layers.control_flow import ConditionalBlock

Y
Yu Yang 已提交
26 27 28 29 30 31
import unittest
import numpy as np


class TestMNISTIfElseOp(unittest.TestCase):
    def test_raw_api(self):
32 33 34 35
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
36

37
            label = layers.data(name='y', shape=[1], dtype='int64')
Y
Yu Yang 已提交
38

39
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
40
            cond = layers.less_than(x=label, y=limit)
41
            true_image, false_image = split_lod_tensor(input=image, mask=cond)
Y
Yu Yang 已提交
42

43
            true_out = layers.create_tensor(dtype='float32')
44
            true_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
45

46 47 48 49
            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)
Y
Yu Yang 已提交
50

51
            false_out = layers.create_tensor(dtype='float32')
52
            false_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
53

54 55 56 57
            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)
Y
Yu Yang 已提交
58

59
            prob = merge_lod_tensor(
60 61
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
Y
Yu Yang 已提交
62
            avg_loss = layers.mean(loss)
Y
Yu Yang 已提交
63

64 65
            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
66 67 68 69

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
70
            batch_size=10)
Y
Yu Yang 已提交
71 72 73 74

        place = core.CPUPlace()
        exe = Executor(place)

75
        exe.run(startup_prog)
Y
Yu Yang 已提交
76 77 78 79 80 81 82
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

83
                outs = exe.run(prog,
D
dzhwinter 已提交
84 85 86
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
Y
Yu Yang 已提交
87 88 89 90 91 92
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)

    def test_ifelse(self):
93 94 95 96 97 98 99
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

100
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
Y
Yu Yang 已提交
118
            avg_loss = layers.mean(loss)
119 120 121

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
122 123 124 125 126 127 128 129
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

130
        exe.run(startup_prog)
Y
Yu Yang 已提交
131 132 133 134 135
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
D
dzhwinter 已提交
136
                y_data = y_data.reshape((y_data.shape[0], 1))
Y
Yu Yang 已提交
137

138
                outs = exe.run(prog,
D
dzhwinter 已提交
139 140 141
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
Y
Yu Yang 已提交
142 143 144 145 146 147
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class TestIfElse(unittest.TestCase):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 0.5
        self.data = np.random.rand(25, 1).astype(np.float32)

    def compare_ifelse_op_and_numpy(self, place):
        self.set_test_case()

        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            src = layers.data(name='data', shape=[1], dtype='float32')
            cond = layers.fill_constant(
                [1], dtype='float32', value=self.cond_value)
            ifcond = layers.less_than(x=src, y=cond)
            ie = layers.IfElse(ifcond)
            with ie.true_block():
                true_target = ie.input(src)
                ie.output(true_target)

            with ie.false_block():
                false_target = ie.input(src)
                ie.output(false_target)
            if_out = ie()
            out = layers.reduce_sum(if_out)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            fetch_list = [out]
            o1, = exe.run(fluid.default_main_program(),
                          feed={'data': self.data},
                          fetch_list=[out])
            o2 = np.sum(self.data)
            self.assertTrue(
                np.allclose(
                    o1, o2, atol=1e-8),
                "IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))

    def test_cpu(self):
        self.compare_ifelse_op_and_numpy(fluid.CPUPlace())

    def test_cuda(self):
        if not core.is_compiled_with_cuda():
            return
        self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))


class TestIfElseTrueBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 10.
        self.data = np.random.rand(25, 1).astype(np.float32)


class TestIfElseFalseBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = -10.
        self.data = np.random.rand(25, 1).astype(np.float32)


Y
Yu Yang 已提交
210
if __name__ == '__main__':
211
    unittest.main()