API.spec 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
paddle.fluid.Program.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.block ArgSpec(args=['self', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.clone ArgSpec(args=['self', 'for_test'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Program.copy_data_info_from ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.create_block ArgSpec(args=['self', 'parent_idx'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Program.current_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.get_desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.inference_optimize ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.optimized_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.prune ArgSpec(args=['self', 'targets'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.rollback ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Operator.__init__ ArgSpec(args=['self', 'block', 'desc', 'type', 'inputs', 'outputs', 'attrs'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.output ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_input ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_output ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.__init__ ArgSpec(args=['self', 'block', 'shape', 'dtype'], varargs=None, keywords='kwargs', defaults=None)
paddle.fluid.Parameter.astype ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.as_lodtensor ArgSpec(args=['self', 'data'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.begin_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.end_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False))
paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.fetch_var ArgSpec(args=['name', 'scope', 'return_numpy'], varargs=None, keywords=None, defaults=(None, True))
paddle.fluid.Go.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Go.construct_go_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.make_channel ArgSpec(args=['dtype', 'capacity'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.channel_send ArgSpec(args=['channel', 'value', 'is_copy'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.channel_recv ArgSpec(args=['channel', 'return_value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.channel_close ArgSpec(args=['channel'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Select.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Select.case ArgSpec(args=['self', 'channel_action_fn', 'channel', 'value', 'is_copy'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Select.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.__init__ ArgSpec(args=['self', 'train_func', 'optimizer_func', 'param_path', 'place', 'parallel', 'checkpoint_config'], varargs=None, keywords=None, defaults=(None, None, False, None))
paddle.fluid.Trainer.save_params ArgSpec(args=['self', 'param_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.test ArgSpec(args=['self', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.train ArgSpec(args=['self', 'num_epochs', 'event_handler', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.BeginEpochEvent.__init__ ArgSpec(args=['self', 'epoch_id'], varargs=None, keywords=None, defaults=None)
paddle.fluid.EndEpochEvent.__init__ ArgSpec(args=['self', 'epoch_id'], varargs=None, keywords=None, defaults=None)
paddle.fluid.BeginStepEvent.__init__ ArgSpec(args=['self', 'epoch_id', 'step_id'], varargs=None, keywords=None, defaults=None)
paddle.fluid.EndStepEvent.__init__ ArgSpec(args=['self', 'epoch_id', 'step_id', 'metrics'], varargs=None, keywords=None, defaults=None)
paddle.fluid.CheckpointConfig.__init__ ArgSpec(args=['self', 'checkpoint_dir', 'max_num_checkpoints', 'epoch_interval', 'step_interval'], varargs=None, keywords=None, defaults=(None, 3, 1, 10))
paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path', 'place', 'parallel'], varargs=None, keywords=None, defaults=(None, False))
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.create_splited_vars ArgSpec(args=['self', 'source_var', 'block', 'tag'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.InferenceTranspiler.__init__ 
paddle.fluid.InferenceTranspiler.fuse_batch_norm ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=None)
paddle.fluid.InferenceTranspiler.fuse_relu_mkldnn ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspilerConfig.__init__ 
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id'], varargs=None, keywords='kwargs', defaults=(None, None, None, None, None, 1, 0))
paddle.fluid.ParallelExecutor.bcast_params ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None
paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core.ReduceStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.BuildStrategy) -> None
paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None)
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0))
paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0))
paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0))
paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'use_mkldnn', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, False, None, False, None))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None))
paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid'))
paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crf_decoding ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, False, None, None, None, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None))
paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_max ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_min ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_prod ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.sequence_first_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_last_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name'], varargs=None, keywords=None, defaults=(False, None, None))
paddle.fluid.layers.split ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.ctc_greedy_decoder ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.l2_normalize ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None))
paddle.fluid.layers.matmul ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'name'], varargs=None, keywords=None, defaults=(False, False, None))
paddle.fluid.layers.topk ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times'], varargs=None, keywords=None, defaults=(0, False))
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None))
paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1))
paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None))
paddle.fluid.layers.lod_reset ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.lrn ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None))
paddle.fluid.layers.pad ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None))
paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None))
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.relu ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
Y
yuyang18 已提交
176
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
177 178 179 180 181
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shuffle ArgSpec(args=['reader', 'buffer_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.batch ArgSpec(args=['reader', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.double_buffer ArgSpec(args=['reader', 'place', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes', 'lod_levels', 'for_parallel'], varargs=None, keywords=None, defaults=(True,))
Y
yuyang18 已提交
182
paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, None, True))
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Preprocessor.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Preprocessor.outputs ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.load ArgSpec(args=['out', 'file_path', 'load_as_fp16'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.create_tensor ArgSpec(args=['dtype', 'name', 'persistable'], varargs=None, keywords=None, defaults=(None, False))
paddle.fluid.layers.create_parameter ArgSpec(args=['shape', 'dtype', 'name', 'attr', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(None, None, False, None))
paddle.fluid.layers.create_global_var ArgSpec(args=['shape', 'value', 'dtype', 'persistable', 'force_cpu', 'name'], varargs=None, keywords=None, defaults=(False, False, None))
paddle.fluid.layers.cast ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.concat ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sums ArgSpec(args=['input', 'out'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.assign ArgSpec(args=['input', 'output'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.fill_constant_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx'], varargs=None, keywords=None, defaults=(0, 0))
paddle.fluid.layers.fill_constant ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.argmin ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.argmax ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Switch.case ArgSpec(args=['self', 'condition'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.increment ArgSpec(args=['x', 'value', 'in_place'], varargs=None, keywords=None, defaults=(1.0, True))
paddle.fluid.layers.array_write ArgSpec(args=['x', 'i', 'array'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.create_array ArgSpec(args=['dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.less_than ArgSpec(args=['x', 'y', 'force_cpu', 'cond'], varargs=None, keywords='ignored', defaults=(None, None))
paddle.fluid.layers.equal ArgSpec(args=['x', 'y', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.array_read ArgSpec(args=['array', 'i'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.array_length ArgSpec(args=['array'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.IfElse.false_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.DynamicRNN.memory ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32'))
paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.update_memory ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.StaticRNN.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.memory ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1))
paddle.fluid.layers.StaticRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.step ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.step_output ArgSpec(args=['self', 'o'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.__init__ ArgSpec(args=['self', 'places', 'use_nccl', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.ParallelDo.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.do ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.get_parameters ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.read_input ArgSpec(args=['self', 'var'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ParallelDo.write_output ArgSpec(args=['self', 'var'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both'))
paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.scale ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_add ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_div ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_sub ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_max ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_min ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elementwise_pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logsigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.exp ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.tanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.tanh_shrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softshrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sqrt ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.abs ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.ceil ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.floor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.cos ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sin ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.round ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.reciprocal ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.square ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softplus ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.softsign ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.brelu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.leaky_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.soft_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.relu6 ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.stanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.hard_sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.swish ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.thresholded_relu ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.prior_box ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False))
paddle.fluid.layers.multi_box_head ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False))
paddle.fluid.layers.bipartite_match ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.detection_output ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0))
paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None))
paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral'))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['loc', 'scores', 'anchor_box', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3))
paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None))
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC', 200, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.natural_exp_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.inverse_time_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.polynomial_decay ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False))
paddle.fluid.layers.piecewise_decay ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.noam_decay ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.append_LARS ArgSpec(args=['params_grads', 'learning_rate', 'weight_decay'], varargs=None, keywords=None, defaults=None)
Q
Qingsheng Li 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
paddle.fluid.contrib.InitState.__init__ ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32'))
paddle.fluid.contrib.StateCell.__init__ ArgSpec(args=['self', 'inputs', 'states', 'out_state', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.StateCell.compute_state ArgSpec(args=['self', 'inputs'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.get_input ArgSpec(args=['self', 'input_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.get_state ArgSpec(args=['self', 'state_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.out_state ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.set_state ArgSpec(args=['self', 'state_name', 'state_value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.state_updater ArgSpec(args=['self', 'updater'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.update_states ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.TrainingDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.contrib.TrainingDecoder.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'init_ids', 'init_scores', 'target_dict_dim', 'word_dim', 'input_var_dict', 'topk_size', 'sparse_emb', 'max_len', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=({}, 50, True, 100, 1, 1, None))
paddle.fluid.contrib.BeamSearchDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.decode ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False))
paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.create_splited_vars ArgSpec(args=['self', 'source_var', 'block', 'tag'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.transpiler.InferenceTranspiler.__init__ 
paddle.fluid.transpiler.InferenceTranspiler.fuse_batch_norm ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.InferenceTranspiler.fuse_relu_mkldnn ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.transpiler.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.HashName.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.HashName.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.HashName.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__ 
paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True, False))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate'], varargs=None, keywords='kwargs', defaults=None)
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov'], varargs=None, keywords='kwargs', defaults=(False,))
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon'], varargs=None, keywords='kwargs', defaults=(1e-06,))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08))
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08))
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06))
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power'], varargs=None, keywords='kwargs', defaults=(0.0, 0.0, -0.5))
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum'], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06, 0.0))
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho'], varargs=None, keywords='kwargs', defaults=(1e-06, 0.95))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window'], varargs=None, keywords='kwargs', defaults=(10000, 10000))
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None  2. __init__(self: paddle.fluid.core.LoDTensor) -> None
paddle.fluid.LoDTensor.has_valid_recursive_sequence_lengths has_valid_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> bool
paddle.fluid.LoDTensor.lod lod(self: paddle.fluid.core.LoDTensor) -> List[List[int]]
paddle.fluid.LoDTensor.recursive_sequence_lengths recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> List[List[int]]
paddle.fluid.LoDTensor.set 1. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CPUPlace) -> None  2. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CPUPlace) -> None  3. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CPUPlace) -> None  4. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CPUPlace) -> None  5. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CPUPlace) -> None  6. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CPUPlace) -> None  7. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CPUPlace) -> None  8. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPlace) -> None  9. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPlace) -> None  10. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPlace) -> None  11. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPlace) -> None  12. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPlace) -> None  13. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPlace) -> None  14. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPlace) -> None  15. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPinnedPlace) -> None  16. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPinnedPlace) -> None  17. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPinnedPlace) -> None  18. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPinnedPlace) -> None  19. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPinnedPlace) -> None  20. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPinnedPlace) -> None  21. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPinnedPlace) -> None
paddle.fluid.LoDTensor.set_lod set_lod(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None
paddle.fluid.LoDTensor.set_recursive_sequence_lengths set_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None
paddle.fluid.LoDTensor.shape shape(self: paddle.fluid.core.Tensor) -> List[int]
paddle.fluid.LoDTensorArray.__init__ __init__(self: paddle.fluid.core.LoDTensorArray) -> None
paddle.fluid.LoDTensorArray.append append(self: paddle.fluid.core.LoDTensorArray, arg0: paddle.fluid.core.LoDTensor) -> None
paddle.fluid.CPUPlace.__init__ __init__(self: paddle.fluid.core.CPUPlace) -> None
paddle.fluid.CUDAPlace.__init__ __init__(self: paddle.fluid.core.CUDAPlace, arg0: int) -> None
paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinnedPlace) -> None
paddle.fluid.ParamAttr.__init__ ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False))
paddle.fluid.WeightNormParamAttr.__init__ ArgSpec(args=['self', 'dim'], varargs=None, keywords='kwargs', defaults=(None,))
paddle.fluid.DataFeeder.__init__ ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DataFeeder.decorate_reader ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True))
paddle.fluid.DataFeeder.feed ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeeder.feed_parallel ArgSpec(args=['self', 'iterable', 'num_places'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.clip.ErrorClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.clip.GradientClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.clip.GradientClipByNorm.__init__ ArgSpec(args=['self', 'clip_norm'], varargs=None, keywords=None, defaults=None)
paddle.fluid.clip.GradientClipByGlobalNorm.__init__ ArgSpec(args=['self', 'clip_norm', 'group_name'], varargs=None, keywords=None, defaults=('default_group',))
paddle.fluid.profiler.cuda_profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.profiler.reset_profiler ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.profiler.profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.profiler.start_profiler ArgSpec(args=['state'], varargs=None, keywords=None, defaults=None)
paddle.fluid.profiler.stop_profiler ArgSpec(args=['sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile'))
paddle.fluid.unique_name.generate ArgSpec(args=['key'], varargs=None, keywords=None, defaults=None)
paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.Scope.__init__ __init__(self: paddle.fluid.core.Scope) -> None
paddle.fluid.Scope.drop_kids drop_kids(self: paddle.fluid.core.Scope) -> None
paddle.fluid.Scope.find_var find_var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable
paddle.fluid.Scope.new_scope new_scope(self: paddle.fluid.core.Scope) -> paddle.fluid.core.Scope
paddle.fluid.Scope.var var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable