quantize_linear_op.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/quantize_linear_op.h"
13

14 15 16
#include <algorithm>
#include <string>
#include <vector>
17

18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"

namespace paddle {
namespace operators {

template <typename T>
struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
29 30 31 32 33 34
  void operator()(const platform::CPUDeviceContext &dev_ctx,
                  const framework::Tensor *in,
                  const framework::Tensor *scale,
                  T max_range,
                  const int quant_axis,
                  framework::Tensor *out) {
35 36 37 38
    // Dequant op is before quantized op
    // Dequantize the weight of quantized op
    auto in_dims = in->dims();
    const int64_t channel = in_dims[quant_axis];
39
    const T *scale_factor = scale->data<T>();
40 41 42 43 44 45 46
    if (quant_axis == 0) {
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_factor[i];
        framework::Tensor one_channel_in = in->Slice(i, i + 1);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
47
        auto &dev = *dev_ctx.eigen_device();
48 49 50 51 52 53 54 55 56
        out_e.device(dev) = in_e * s / max_range;
      }
    } else if (quant_axis == 1) {
      int64_t out_iter = 1;
      for (int i = 0; i < quant_axis; i++) {
        out_iter *= in_dims[i];
      }
      int64_t step_i = in->numel() / out_iter;
      int64_t step_j = in->numel() / (out_iter * channel);
57 58
      auto *in_data = in->data<T>();
      auto *out_data = out->mutable_data<T>(dev_ctx.GetPlace());
59 60
      for (int64_t i = 0; i < out_iter; i++) {
        for (int64_t j = 0; j < channel; j++) {
61 62
          auto *cur_in = in_data + i * step_i + j * step_j;
          auto *cur_out = out_data + i * step_i + j * step_j;
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
          T s = scale_factor[j];
          for (int64_t k = 0; k < step_j; k++) {
            *cur_out = (*cur_in) * s / max_range;
            ++cur_in;
            ++cur_out;
          }
        }
      }
    }
  }
};

template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, double>;

class QuantizeLinearOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
81
  void InferShape(framework::InferShapeContext *ctx) const override {
82 83
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "QuantizeLinear");
    OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "QuantizeLinear");
84 85
    OP_INOUT_CHECK(
        ctx->HasInput("ZeroPoint"), "Input", "ZeroPoint", "QuantizeLinear");
86 87 88 89 90 91 92 93 94 95
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "QuantizeLinear");
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    if (ctx->HasOutput("OutScale")) {
      if (quant_axis < 0) {
        ctx->SetOutputDim("OutScale", {1});
      } else {
        ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
      }
    }
96 97 98 99 100 101
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
102 103 104 105 106
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
107
      const framework::ExecutionContext &ctx) const override {
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("Scale", "(Tensor) Input is float data type.");
    AddInput("ZeroPoint", "(Tensor) Input is float data type.");
    AddOutput("Y",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    AddInput("InAccum", "Last accum.")
        .AsDispensable()
        .AsExtra();  // only qat use
    AddInput("InState", "Last state.")
        .AsDispensable()
        .AsExtra();  // only qat use
    AddOutput("OutState", "(Tensor) state buffer.")
        .AsDispensable()
        .AsExtra();  // only qat use
    AddOutput("OutAccum", "(Tensor) accum buffer.")
        .AsDispensable()
        .AsExtra();  // only qat use
    AddOutput("OutScale", "(Tensor) Current scale")
        .AsDispensable()
        .AsExtra();  // only qat use
    AddAttr<float>("moving_rate",
                   "(float, default 0.9) moving rate.")  // only qat use
        .SetDefault(0.9)
        .AsExtra();
141 142 143 144 145
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
146
        .AddCustomChecker([](const int &quant_axis) {
147
          PADDLE_ENFORCE_EQ(
148 149
              quant_axis == 0 || quant_axis == 1 || quant_axis == -1,
              true,
150 151 152 153 154 155 156
              platform::errors::InvalidArgument(
                  "'quant_axis' should be 0 or 1, but "
                  "the received is %d",
                  quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
157 158 159
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
160 161 162 163 164
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    AddAttr<int>(
        "round_type",
        "(int, default 0) The round type of fp32 to int."
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
        .SetDefault(0)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
181
        });
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(true);
    AddComment(R"DOC(
The scale of QuantizeLinear operator is a vector.
In detail, each channel of the input X has a scale value.
$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(
205 206 207
    quantize_linear,
    ops::QuantizeLinearOp,
    ops::QuantizeLinearOpMaker,
208 209 210 211 212 213
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(quantize_linear, ops::QuantizeLinearKernel<CPU, float>);

REGISTER_OPERATOR(
214 215 216
    dequantize_linear,
    ops::QuantizeLinearOp,
    ops::QuantizeLinearOpMaker,
217 218 219 220 221 222 223
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(dequantize_linear,
                       ops::DeQuantizeLinearKernel<CPU, float, float>,
                       ops::DeQuantizeLinearKernel<CPU, int8_t, float>,
                       ops::DeQuantizeLinearKernel<CPU, double, double>);