conv3d_op.h 10.8 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class Conv3DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Conv3DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv3DOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};

template <typename Place, typename T>
class GemmConv3DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    int groups = context.Attr<int>("groups");

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
    int filter_depth = filter.dims()[filter.dims().size() - 3];
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
    int output_depth = output->dims()[2];
    int output_height = output->dims()[3];
    int output_width = output->dims()[4];

    paddle::operators::math::Vol2ColFunctor<Place, T> vol2col;
    // use col_shape in the vol2col calculation
    framework::DDim col_shape = {input_channels / groups,
                                 filter_depth,
                                 filter_height,
                                 filter_width,
                                 output_depth,
                                 output_height,
                                 output_width};
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
        input_channels / groups * filter_depth * filter_height * filter_width,
        output_depth * output_height * output_width};
    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3], input->dims()[4]};
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
        output_channels, output_depth * output_height * output_width};

    // convolution operator: vol2col + gemm
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
      for (int g = 0; g < groups; g++) {
        // vol2col
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
        vol2col(context.device_context(), in_slice, col, strides[0], strides[1],
                strides[2], paddings[0], paddings[1], paddings[2]);

        // gemm
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
        math::matmul<Place, T>(context.device_context(), filter_slice, false,
                               col_matrix, false, T(1.0), &out_slice, T(0.0));
      }
    }
  }
};

template <typename Place, typename T>
class GemmConvGrad3DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    int groups = context.Attr<int>("groups");

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
    int filter_depth = filter.dims()[filter.dims().size() - 3];
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output_grad->dims()[1];
    int output_depth = output_grad->dims()[2];
    int output_height = output_grad->dims()[3];
    int output_width = output_grad->dims()[4];

    paddle::operators::math::Col2VolFunctor<Place, T> col2vol;
    paddle::operators::math::Vol2ColFunctor<Place, T> vol2col;
    // use col_shape in the vol2col and col2vol calculation
    framework::DDim col_shape = {input_channels / groups,
                                 filter_depth,
                                 filter_height,
                                 filter_width,
                                 output_depth,
                                 output_height,
                                 output_width};
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
        input_channels / groups * filter_depth * filter_height * filter_width,
        output_depth * output_height * output_width};
    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3], input->dims()[4]};
    framework::DDim output_matrix_shape = {output_grad->dims()[1],
                                           output_grad->dims()[2] *
                                               output_grad->dims()[3] *
                                               output_grad->dims()[4]};

    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
    filter.Resize(filter_matrix_shape);

    // convolution backward input operator:  gemm + col2vol
    // convolution backward weight operator: vol2col + gemm
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
          math::matmul<Place, T>(context.device_context(), filter_slice, true,
                                 out_grad_slice, false, T(1.0), &col_matrix,
                                 T(0.0));

          // col2vol
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          col2vol(context.device_context(), in_grad_slice, col, strides[0],
                  strides[1], strides[2], paddings[0], paddings[1],
                  paddings[2]);
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // vol2col
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          vol2col(context.device_context(), in_slice, col, strides[0],
                  strides[1], strides[2], paddings[0], paddings[1],
                  paddings[2]);

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
          math::matmul<Place, T>(context.device_context(), out_grad_slice,
                                 false, col_matrix, true, T(1.0),
                                 &filter_grad_slice, T(1.0));
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle