sum_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13
#include <vector>
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
27

Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30 31
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
32
            framework::proto::VarDesc::LOD_TENSOR_ARRAY) {
33 34
      return;  // skip runtime infershape when is tensor array;
    }
35

36
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
37
    size_t N = x_dims.size();
Q
qijun 已提交
38
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
39

40 41 42 43 44 45 46 47 48 49
    framework::DDim in_dim({0});
    for (auto& x_dim : x_dims) {
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
50
    }
Q
Qiao Longfei 已提交
51 52
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
53
  }
54 55

 protected:
56
  framework::OpKernelType GetExpectedKernelType(
57 58 59
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
      int dtype = -1;
      for (auto& x_var : x_vars) {
        auto& lod_tensor = x_var->Get<framework::LoDTensor>();
        if (lod_tensor.numel() == 0) {
          continue;
        }
        if (dtype == -1) {
          dtype = framework::ToDataType(lod_tensor.type());
        } else {
          PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type()));
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

75 76
      return framework::OpKernelType(
          static_cast<framework::proto::DataType>(dtype), ctx.device_context());
77
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
78 79 80 81
      return framework::OpKernelType(
          framework::ToDataType(
              x_vars[0]->Get<framework::SelectedRows>().value().type()),
          ctx.device_context());
82
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
83 84 85 86 87 88 89
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
            return framework::OpKernelType(framework::ToDataType(each.type()),
                                           ctx.device_context());
          }
90 91
        }
      }
Y
Yang Yang(Tony) 已提交
92
      PADDLE_THROW("Cannot find the input data type by all input data");
93 94 95 96
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
97 98 99 100
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
101
  SumOpMaker(OpProto* proto, OpAttrChecker* op_checker)
102
      : OpProtoAndCheckerMaker(proto, op_checker) {
103 104 105
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
106
    AddComment(R"DOC(
107
Sum operator.
108

109 110
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
111
the LoD information with the first input.
112
)DOC");
113 114 115
  }
};

Q
QI JUN 已提交
116 117
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
118 119
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
QI JUN 已提交
120
    auto& inputs = op_desc.Input("X");
121
    auto var_type = framework::proto::VarDesc::SELECTED_ROWS;
Q
QI JUN 已提交
122

Y
Yang Yang(Tony) 已提交
123 124
    for (auto& name : op_desc.Input("X")) {
      VLOG(10) << name << " "
Y
Yang Yu 已提交
125
               << block->FindRecursiveOrCreateVar(name).GetType();
Y
Yang Yang(Tony) 已提交
126 127
    }

Q
QI JUN 已提交
128 129
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yu 已提交
130
          return block->FindRecursiveOrCreateVar(name).GetType() ==
131
                 framework::proto::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
132
        });
133 134

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yu 已提交
135
      return block->FindRecursiveOrCreateVar(name).GetType() ==
136
             framework::proto::VarDesc::LOD_TENSOR_ARRAY;
137 138 139 140 141 142 143 144
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
145 146 147 148
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
Y
Yang Yu 已提交
149
             << block->FindRecursiveOrCreateVar(each).GetType() << "\n";
Y
Yang Yang(Tony) 已提交
150 151 152 153
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
154
      var_type = framework::proto::VarDesc::LOD_TENSOR_ARRAY;
155
    } else if (any_input_is_lod_tensor) {
156
      var_type = framework::proto::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
157 158 159
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yu 已提交
160
    auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
Y
Yang Yang(Tony) 已提交
161 162 163
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
164 165 166
  }
};

167
class SumGradMaker : public framework::GradOpDescMakerBase {
168
 public:
169
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
170

Y
Yu Yang 已提交
171
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
172
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
173
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
174 175 176 177
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
178
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
179 180 181 182
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
183
                     return std::unique_ptr<framework::OpDesc>(grad_op);
184 185
                   });
    return grad_ops;
186 187 188 189 190 191 192
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
193

Q
QI JUN 已提交
194 195
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Q
QI JUN 已提交
196 197 198 199 200
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);