isclose_kernel_impl.h 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <cmath>
#include <string>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
21
#include "paddle/phi/common/amp_type_traits.h"
22 23 24 25 26
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"

// TODO(xiongkun): remove the header when decouple the memcpy function in phi.
27
#include "paddle/phi/common/memory_utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace phi {
using Tensor = DenseTensor;
template <typename DeviceContext, typename T>
struct GetTensorValue {
  T operator()(const DeviceContext& ctx, const DenseTensor& tensor) const;
};

template <typename DeviceContext, typename T>
struct IscloseFunctor {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor& in,
                  const DenseTensor& other,
                  const float rtol,
                  const float atol,
                  bool equal_nan,
                  DenseTensor* output);
};

template <typename T>
struct GetTensorValue<phi::CPUContext, T> {
  T operator()(const phi::CPUContext& dev_ctx,
               const DenseTensor& tensor) const {
    return *(tensor.data<T>());
  }
};

template <typename T>
struct GetTensorValue<phi::GPUContext, T> {
  T operator()(const phi::GPUContext& dev_ctx,
               const DenseTensor& tensor) const {
    const T* data = tensor.data<T>();
    T value;
    const auto gpu_place = dev_ctx.GetPlace();
62
    memory_utils::Copy(
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        phi::CPUPlace(), &value, gpu_place, data, sizeof(T), dev_ctx.stream());
    return value;
  }
};

template <typename T>
struct IscloseFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext& ctx,
                  const DenseTensor& in,
                  const DenseTensor& other,
                  const double rtol,
                  const double atol,
                  bool equal_nan,
                  DenseTensor* output) {
    auto* in_a = in.data<T>();
    auto* in_b = other.data<T>();
    auto* out_data = ctx.template Alloc<bool>(output);
    auto num = in.numel();
    // *out_data = true;
    for (int i = 0; i < num; i++) {
      out_data[i] = true;
    }
    for (int i = 0; i < num; i++) {
      const T a = in_a[i], b = in_b[i];
      bool val;
      if (std::isnan(a) || std::isnan(b)) {
        val = equal_nan && std::isnan(a) == std::isnan(b);
      } else {
        T left = (a > b ? a - b : b - a);
        T right = atol + (b > 0 ? rtol * b : (-rtol) * b);
        T diff = (left > right ? left - right : right - left);
        val = a == b || left <= right || diff <= 1e-15;
      }
      // *out_data &= val;
      out_data[i] = val;
    }
  }
};

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
__global__ void IscloseCUDAKernel(const T* in_data,
                                  const T* other_data,
                                  const double rtol,
                                  const double atol,
                                  bool equal_nan,
                                  int num,
                                  bool* out_data) {
  unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;
  bool val;
113
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
114
  for (int i = idx; i < num; i += blockDim.x * gridDim.x) {
115 116
    const MPType a = static_cast<MPType>(in_data[i]);
    const MPType b = static_cast<MPType>(other_data[i]);
117 118 119
    if (isnan(a) || isnan(b)) {
      val = equal_nan && isnan(a) == isnan(b);
    } else {
120 121 122
      MPType left = (a > b ? a - b : b - a);
      MPType right = atol + (b > 0 ? rtol * b : (-rtol) * b);
      MPType diff = (left > right ? left - right : right - left);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
      val = a == b || left <= right || diff <= 1e-15;
    }
    out_data[i] = val;
    // if (!val) *out_data = false;
  }
}

template <typename T>
struct IscloseFunctor<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& dev_ctx,
                  const DenseTensor& in,
                  const DenseTensor& other,
                  const double rtol,
                  const double atol,
                  bool equal_nan,
                  DenseTensor* output) {
    int num = in.numel();
    const T* in_data = in.data<T>();
    const T* other_data = other.data<T>();
    bool* out_data = dev_ctx.template Alloc<bool>(output);
    int block = 1024;
    int grid = (block - 1 + num) / block;
    grid = (grid > block) ? block : grid;
#ifdef PADDLE_WITH_HIP
    hipMemset(out_data, true, num * sizeof(bool));
#else
    cudaMemset(out_data, true, num * sizeof(bool));
#endif
    IscloseCUDAKernel<T><<<grid, block, 0, dev_ctx.stream()>>>(
        in_data, other_data, rtol, atol, equal_nan, num, out_data);
  }
};
#endif

template <typename T, typename Context>
void IscloseKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const Scalar& rtol,
                   const Scalar& atol,
                   bool equal_nan,
                   DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
      atol.dtype(),
      DataType::FLOAT64,
      phi::errors::InvalidArgument("Input(Atol) type must be double"));

  PADDLE_ENFORCE_EQ(
      rtol.dtype(),
      DataType::FLOAT64,
      phi::errors::InvalidArgument("Input(Rtol) type must be double"));

  IscloseFunctor<Context, T>()(
      dev_ctx, x, y, rtol.to<double>(), atol.to<double>(), equal_nan, out);
}
}  // namespace phi