adam.py 14.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
19 20 21 22
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
import warnings
W
WangXi 已提交
23
from ..fluid.dygraph import base as imperative_base
M
MRXLT 已提交
24

25 26
import paddle

M
MRXLT 已提交
27 28

class Adam(Optimizer):
29
    r"""
M
MRXLT 已提交
30 31 32 33
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
34

M
MRXLT 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
53 54
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
55 56 57 58 59 60 61 62
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
63
	parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
M
MRXLT 已提交
64 65 66 67 68 69 70 71 72
	    This parameter is required in dygraph mode. \
	    The default value is None in static mode, at this time all parameters will be updated.
	weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
	    It canbe a float value as coeff of L2 regularization or \
	    :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
	    If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
	    the regularization setting here in optimizer will be ignored for this parameter. \
	    Otherwise, the regularization setting here in optimizer will take effect. \
	    Default None, meaning there is no regularization.
73 74 75
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
76 77 78 79 80 81 82 83
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
84
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
85 86 87
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
88 89 90 91 92 93 94

    Examples:
        .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(10, 10)
95
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

        .. code-block:: python

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
110
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
140
                 lazy_mode=False,
141
                 multi_precision=False,
142
                 name=None):
M
MRXLT 已提交
143 144 145 146
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
M
MRXLT 已提交
147 148 149 150 151 152
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
M
MRXLT 已提交
153 154 155 156 157 158 159 160 161 162 163
        super(Adam, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name)
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_fp32_master"
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
        if acc_dtype == core.VarDesc.VarType.FP16:
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
            fill_value=0.9 if isinstance(self._beta1, Variable) \
                    else self._beta1,
            shape=[1],
            type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
            fill_value=0.999 if isinstance(self._beta2, Variable) \
                    else self._beta2,
            shape=[1],
            type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
M
MRXLT 已提交
232 233 234 235 236 237

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
238 239 240 241 242 243 244
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
245
                    "Consider using multi_precision=True option of the Adam optimizer."
246 247
                )
            self._add_moments_pows(p)
M
MRXLT 已提交
248 249 250 251 252 253 254 255 256 257 258 259

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
260 261 262 263
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)
M
MRXLT 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
300 301
            "min_row_size_to_use_multithread": 1000,
            "multi_precision": find_master
M
MRXLT 已提交
302 303 304 305 306 307 308 309 310 311 312
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

313 314 315 316
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

M
MRXLT 已提交
317 318 319 320 321 322 323 324
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True)

        return adam_op
325

W
WangXi 已提交
326
    @imperative_base.no_grad
327 328 329 330
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.
331

332 333 334 335 336 337 338
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
339 340
                
                a = paddle.rand([2,13], dtype="float32")
341 342
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
343
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
344 345 346 347 348 349 350 351
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        params_grads = []
        for param in self._parameter_list:
352
            if param.stop_gradient:
353 354 355
                continue
            if param._grad_ivar() is not None:
                grad_var = param._grad_ivar()
M
MRXLT 已提交
356 357 358 359 360
                if hasattr(grad_var, "_is_sparse") and grad_var._is_sparse(
                ) and self.regularization is not None:
                    raise RuntimeError(
                        "Adam don't support weight_decay with sparse parameters, please set it to None."
                    )
361 362 363 364
                params_grads.append((param, grad_var))

        optimize_ops = self._apply_optimize(
            loss=None, startup_program=None, params_grads=params_grads)