image_multiproc.py 9.1 KB
Newer Older
1 2 3 4
import os, sys
import numpy as np
from PIL import Image
from cStringIO import StringIO
5
import multiprocessing
D
dangqingqing 已提交
6 7
import functools
import itertools
8 9 10

from paddle.utils.image_util import *
from paddle.trainer.config_parser import logger
11

12 13 14
try:
    import cv2
except ImportError:
15
    logger.warning("OpenCV2 is not installed, using PIL to process")
16
    cv2 = None
17

D
dangqingqing 已提交
18
__all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"]
19

D
dangqingqing 已提交
20 21

class CvTransformer(ImageTransformer):
22
    """
D
dangqingqing 已提交
23
    CvTransformer used python-opencv to process image.
24 25
    """

26 27 28 29 30 31 32 33 34
    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
35 36 37 38 39
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

40
    def resize(self, im, min_size):
41
        row, col = im.shape[:2]
42 43 44
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
45
        else:
46 47
            new_col = min_size * col / row
        im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC)
48 49
        return im

50
    def crop_and_flip(self, im):
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        im: (H x W x K) ndarrays
        """
        row, col = im.shape[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        if self.is_color:
            im = im[start_h:end_h, start_w:end_w, :]
        else:
            im = im[start_h:end_h, start_w:end_w]
        if (self.is_train) and (np.random.randint(2) == 0):
            if self.is_color:
                im = im[:, ::-1, :]
            else:
                im = im[:, ::-1]
        return im

    def transform(self, im):
77 78
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
        # transpose, swap channel, sub mean
        im = im.astype('float32')
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imdecode(np.fromstring(data, np.uint8), flag)
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

93 94 95 96 97 98 99 100 101 102
    def load_image_from_file(self, file):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imread(file, flag)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
103
class PILTransformer(ImageTransformer):
104
    """
D
dangqingqing 已提交
105
    PILTransformer used PIL to process image.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    """

    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

    def resize(self, im, min_size):
        row, col = im.size[:2]
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
        else:
            new_col = min_size * col / row
        im = im.resize((new_row, new_col), Image.ANTIALIAS)
        return im
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    def crop_and_flip(self, im):
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        """
        row, col = im.size[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        im = im.crop((start_h, start_w, end_h, end_w))
        if (self.is_train) and (np.random.randint(2) == 0):
            im = im.transpose(Image.FLIP_LEFT_RIGHT)
        return im

    def transform(self, im):
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
        im = np.array(im, dtype=np.float32)  # convert to numpy.array
        # transpose, swap channel, sub mean
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        im = Image.open(StringIO(data))
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

    def load_image_from_file(self, file):
        im = Image.open(file)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
176 177 178 179 180
def job(is_img_string, transformer, (data, label)):
    if is_img_string:
        return transformer.transform_from_string(data), label
    else:
        return transformer.transform_from_file(data), label
181 182 183


class MultiProcessImageTransformer(object):
184 185
    def __init__(self,
                 procnum=10,
186
                 resize_size=None,
187
                 crop_size=None,
188
                 transpose=(2, 0, 1),
189 190 191
                 channel_swap=None,
                 mean=None,
                 is_train=True,
192 193
                 is_color=True,
                 is_img_string=True):
194
        """
195 196 197 198
        Processing image with multi-process. If it is used in PyDataProvider,
        the simple usage for CNN is as follows:
       
        .. code-block:: python
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            def hool(settings, is_train,  **kwargs):
                settings.is_train = is_train
                settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32)
                settings.input_types = [
                    dense_vector(3 * 224 * 224),
                    integer_value(1)]
                settings.transformer = MultiProcessImageTransformer(
                    procnum=10,
                    resize_size=256,
                    crop_size=224,
                    transpose=(2, 0, 1),
                    mean=settings.mean_values,
                    is_train=settings.is_train)


            @provider(init_hook=hook, pool_size=20480)
            def process(settings, file_list):
                with open(file_list, 'r') as fdata:
                    for line in fdata: 
                        data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
                        data = data_dic['data']
                        labels = data_dic['label']
                        labels = np.array(labels, dtype=np.float32)
                        for im, lab in settings.dp.run(data, labels):
                            yield [im.astype('float32'), int(lab)]

        :param procnum: processor number.
        :type procnum: int
        :param resize_size: the shorter edge size of image after resizing.
        :type resize_size: int
        :param crop_size: the croping size.
        :type crop_size: int
        :param transpose: the transpose order, Paddle only allow C * H * W order.
        :type transpose: tuple or list
        :param channel_swap: the channel swap order, RGB or BRG.
        :type channel_swap: tuple or list
        :param mean: the mean values of image, per-channel mean or element-wise mean.
        :type mean: array, The dimension is 1 for per-channel mean.
                    The dimension is 3 for element-wise mean. 
        :param is_train: training peroid or testing peroid.
        :type is_train: bool.
        :param is_color: the image is color or gray. 
        :type is_color: bool.
        :param is_img_string: The input can be the file name of image or image string.
        :type is_img_string: bool.
245
        """
246

D
dangqingqing 已提交
247
        self.procnum = procnum
248 249 250
        self.pool = multiprocessing.Pool(procnum)
        self.is_img_string = is_img_string
        if cv2 is not None:
D
dangqingqing 已提交
251
            self.transformer = CvTransformer(resize_size, crop_size, transpose,
252 253 254
                                             channel_swap, mean, is_train,
                                             is_color)
        else:
D
dangqingqing 已提交
255 256 257
            self.transformer = PILTransformer(resize_size, crop_size, transpose,
                                              channel_swap, mean, is_train,
                                              is_color)
258

D
dangqingqing 已提交
259 260 261 262
    def run(self, data, label):
        fun = functools.partial(job, self.is_img_string, self.transformer)
        return self.pool.imap_unordered(
            fun, itertools.izip(data, label), chunksize=100 * self.procnum)