evaluators.html 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Evaluators &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a>Home</a></li>
          <li><a>Get Started</a></li>
          <li class="active"><a>Documentation</a></li>
          <li><a>About Us</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index_en.html">TUTORIALS</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/basic_usage/index_en.html">Simple Linear Regression</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index_en.html">TUTORIALS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/quick_start/index_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/rec/ml_regression_en.html">MovieLens Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/image_classification/index_en.html">Image Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/sentiment_analysis/index_en.html">Sentiment Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/semantic_role_labeling/index_en.html">Semantic Role Labeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/text_generation/index_en.html">Text Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/gan/index_en.html">Image Auto-Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/imagenet_model/resnet_model_en.html">ImageNet: ResNet</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/embedding_model/index_en.html">Embedding: Chinese Word</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">API</a><ul>
155 156 157
<li class="toctree-l2"><a class="reference internal" href="../../v2/model_configs.html">Configuration Related API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Related API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Trainer API</a></li>
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Evaluators</a><ul>
<li><a class="reference internal" href="#base">Base</a></li>
<li><a class="reference internal" href="#classification">Classification</a><ul>
<li><a class="reference internal" href="#classification-error-evaluator">classification_error_evaluator</a></li>
<li><a class="reference internal" href="#auc-evaluator">auc_evaluator</a></li>
<li><a class="reference internal" href="#ctc-error-evaluator">ctc_error_evaluator</a></li>
<li><a class="reference internal" href="#chunk-evaluator">chunk_evaluator</a></li>
<li><a class="reference internal" href="#precision-recall-evaluator">precision_recall_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#rank">Rank</a><ul>
<li><a class="reference internal" href="#pnpair-evaluator">pnpair_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#utils">Utils</a><ul>
<li><a class="reference internal" href="#sum-evaluator">sum_evaluator</a></li>
<li><a class="reference internal" href="#column-sum-evaluator">column_sum_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#print">Print</a><ul>
<li><a class="reference internal" href="#classification-error-printer-evaluator">classification_error_printer_evaluator</a></li>
<li><a class="reference internal" href="#gradient-printer-evaluator">gradient_printer_evaluator</a></li>
<li><a class="reference internal" href="#maxid-printer-evaluator">maxid_printer_evaluator</a></li>
<li><a class="reference internal" href="#maxframe-printer-evaluator">maxframe_printer_evaluator</a></li>
<li><a class="reference internal" href="#seqtext-printer-evaluator">seqtext_printer_evaluator</a></li>
<li><a class="reference internal" href="#value-printer-evaluator">value_printer_evaluator</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Evaluators</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="evaluators">
<span id="api-trainer-config-helpers-evaluators"></span><h1>Evaluators<a class="headerlink" href="#evaluators" title="Permalink to this headline"></a></h1>
<div class="section" id="base">
<h2>Base<a class="headerlink" href="#base" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">evaluator_base</code><span class="sig-paren">(</span><em>input</em>, <em>type</em>, <em>label=None</em>, <em>weight=None</em>, <em>name=None</em>, <em>chunk_scheme=None</em>, <em>num_chunk_types=None</em>, <em>classification_threshold=None</em>, <em>positive_label=None</em>, <em>dict_file=None</em>, <em>result_file=None</em>, <em>num_results=None</em>, <em>delimited=None</em>, <em>top_k=None</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
<dd><p>Evaluator will evaluate the network status while training/testing.</p>
<p>User can use evaluator by classify/regression job. For example.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classify</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">output</span><span class="p">,</span> <span class="n">evaluator</span><span class="o">=</span><span class="n">classification_error_evaluator</span><span class="p">)</span>
</pre></div>
</div>
<p>And user could define evaluator separately as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classification_error_evaluator</span><span class="p">(</span><span class="s2">&quot;ErrorRate&quot;</span><span class="p">,</span> <span class="n">prediction</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<p>The evaluator often contains a name parameter. It will also be printed when
evaluating network. The printed information may look like the following.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
classification_error_evaluator=0.4486
CurrentEval: ErrorRate=0.3964
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>list|LayerOutput</em>) &#8211; Input layers, a object of LayerOutput or a list of
LayerOutput.</li>
<li><strong>label</strong> (<em>LayerOutput|None</em>) &#8211; An input layer containing the ground truth label.</li>
<li><strong>weight</strong> (<em>LayerOutput.</em>) &#8211; An input layer which is a weight for each sample.
Each evaluator may calculate differently to use this weight.</li>
<li><strong>top_k</strong> (<em>int</em>) &#8211; number k in top-k error rate</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="classification">
<h2>Classification<a class="headerlink" href="#classification" title="Permalink to this headline"></a></h2>
<div class="section" id="classification-error-evaluator">
<h3>classification_error_evaluator<a class="headerlink" href="#classification-error-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Classification Error Evaluator. It will print error rate for classification.</p>
<p>The classification error is:</p>
<div class="math">
\[classification\_error = \frac{NumOfWrongPredicts}{NumOfAllSamples}\]</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span>  <span class="n">classification_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. And will just multiply to NumOfWrongPredicts
and NumOfAllSamples. So, the elements of weight are all one,
then means not set weight. The larger weight it is, the more
important this sample is.</li>
<li><strong>top_k</strong> (<em>int</em>) &#8211; number k in top-k error rate</li>
<li><strong>threshold</strong> (<em>float</em>) &#8211; The classification threshold.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">None.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="auc-evaluator">
<h3>auc_evaluator<a class="headerlink" href="#auc-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">auc_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Auc Evaluator which adapts to binary classification.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">auc_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>None|basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1].</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="ctc-error-evaluator">
<h3>ctc_error_evaluator<a class="headerlink" href="#ctc-error-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">ctc_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This evaluator is to calculate sequence-to-sequence edit distance.</p>
<p>The simple usage is :</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">ctc_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer. Should be the same as the input for ctc_layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; input label, which is a data_layer. Should be the same as the
label for ctc_layer</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="chunk-evaluator">
<h3>chunk_evaluator<a class="headerlink" href="#chunk-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">chunk_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.</p>
<p>A chunk is correctly detected if its beginning, end and type are correct.
Other chunk type is ignored.</p>
<p>For each label in the label sequence, we have:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">tagType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">%</span> <span class="n">numTagType</span>
<span class="n">chunkType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">/</span> <span class="n">numTagType</span>
<span class="n">otherChunkType</span> <span class="o">=</span> <span class="n">numChunkTypes</span>
</pre></div>
</div>
<p>The total number of different labels is numTagType*numChunkTypes+1.
We support 4 labelling scheme.
The tag type for each of the scheme is shown as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">Scheme</span> <span class="n">Begin</span> <span class="n">Inside</span> <span class="n">End</span>   <span class="n">Single</span>
<span class="n">plain</span>  <span class="mi">0</span>     <span class="o">-</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOB</span>    <span class="mi">0</span>     <span class="mi">1</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOE</span>    <span class="o">-</span>     <span class="mi">0</span>      <span class="mi">1</span>     <span class="o">-</span>
<span class="n">IOBES</span>  <span class="mi">0</span>     <span class="mi">1</span>      <span class="mi">2</span>     <span class="mi">3</span>
</pre></div>
</div>
<p>&#8216;plain&#8217; means the whole chunk must contain exactly the same chunk label.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">chunk_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">chunk_scheme</span><span class="p">,</span> <span class="n">num_chunk_types</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layers.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; An input layer containing the ground truth label.</li>
<li><strong>chunk_scheme</strong> (<em>basestring</em>) &#8211; The labelling schemes support 4 types. It is one of
&#8220;IOB&#8221;, &#8220;IOE&#8221;, &#8220;IOBES&#8221;, &#8220;plain&#8221;. It is required.</li>
<li><strong>num_chunk_types</strong> &#8211; number of chunk types other than &#8220;other&#8221;</li>
<li><strong>name</strong> (<em>basename|None</em>) &#8211; The Evaluator name, it is optional.</li>
<li><strong>excluded_chunk_types</strong> (<em>list of integer|None</em>) &#8211; chunks of these types are not considered</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="precision-recall-evaluator">
<h3>precision_recall_evaluator<a class="headerlink" href="#precision-recall-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">precision_recall_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>An Evaluator to calculate precision and recall, F1-score.
It is adapt to the task with multiple labels.</p>
<ul class="simple">
<li>If positive_label=-1, it will print the average precision, recall,
F1-score of all labels.</li>
<li>If use specify positive_label, it will print the precision, recall,
F1-score of this label.</li>
</ul>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">precision_recall_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>positive_label</strong> (<em>LayerOutput.</em>) &#8211; The input label layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="rank">
<h2>Rank<a class="headerlink" href="#rank" title="Permalink to this headline"></a></h2>
<div class="section" id="pnpair-evaluator">
<h3>pnpair_evaluator<a class="headerlink" href="#pnpair-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">pnpair_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">pnpair_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">info</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>info</strong> (<em>LayerOutput</em>) &#8211; Label layer name. (TODO, explaination)</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="utils">
<h2>Utils<a class="headerlink" href="#utils" title="Permalink to this headline"></a></h2>
<div class="section" id="sum-evaluator">
<h3>sum_evaluator<a class="headerlink" href="#sum-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>An Evaluator to sum the result of input.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="column-sum-evaluator">
<h3>column_sum_evaluator<a class="headerlink" href="#column-sum-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">column_sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to sum the last column of input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">column_sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="print">
<h2>Print<a class="headerlink" href="#print" title="Permalink to this headline"></a></h2>
<div class="section" id="classification-error-printer-evaluator">
<h3>classification_error_printer_evaluator<a class="headerlink" href="#classification-error-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the classification error of each sample.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">classification_error_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Input label layer.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gradient-printer-evaluator">
<h3>gradient_printer_evaluator<a class="headerlink" href="#gradient-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">gradient_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the gradient of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">gradient_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="maxid-printer-evaluator">
<h3>maxid_printer_evaluator<a class="headerlink" href="#maxid-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxid_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print maximum top k values and their indexes
of each row of input layers. It contains one or more input layers.
k is specified by num_results.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxid_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>num_results</strong> (<em>int.</em>) &#8211; This number is used to specify the top k numbers.
It is 1 by default.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="maxframe-printer-evaluator">
<h3>maxframe_printer_evaluator<a class="headerlink" href="#maxframe-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxframe_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the top k frames of each input layers.
The input layers should contain sequences info or sequences type.
k is specified by num_results.
It contains one or more input layers.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The width of each frame is 1.</p>
</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxframe_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="seqtext-printer-evaluator">
<h3>seqtext_printer_evaluator<a class="headerlink" href="#seqtext-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">seqtext_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sequence text printer will print text according to index matrix and a
dictionary. There can be multiple input to this layer:</p>
<p>1. If there is no id_input, the input must be a matrix containing
the sequence of indices;</p>
<ol class="arabic simple" start="2">
<li>If there is id_input, it should be ids, and interpreted as sample ids.</li>
</ol>
<p>The output format will be:</p>
<ol class="arabic simple">
<li>sequence without sub-sequence, and there is probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">prob</span> <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>sequence without sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="3">
<li>sequence with sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
                <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
<span class="o">...</span>
</pre></div>
</div>
<p>Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
with maxid (when generating) as an input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">seqtext_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">maxid_layer</span><span class="p">,</span>
                                 <span class="n">id_input</span><span class="o">=</span><span class="n">sample_id</span><span class="p">,</span>
                                 <span class="n">dict_file</span><span class="o">=</span><span class="n">dict_file</span><span class="p">,</span>
                                 <span class="n">result_file</span><span class="o">=</span><span class="n">result_file</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>result_file</strong> (<em>basestring</em>) &#8211; Path of the file to store the generated results.</li>
<li><strong>id_input</strong> (<em>LayerOutput</em>) &#8211; Index of the input sequence, and the specified index will
be prited in the gereated results. This an optional
parameter.</li>
<li><strong>dict_file</strong> (<em>basestring</em>) &#8211; Path of dictionary. This is an optional parameter.
Every line is a word in the dictionary with
(line number - 1) as the word index.
If this parameter is set to None, or to an empty string,
only word index are printed in the generated results.</li>
<li><strong>delimited</strong> (<em>bool</em>) &#8211; Whether to use space to separate output tokens.
Default is True. No space is added if set to False.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The seq_text_printer that prints the generated sequence to a file.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">evaluator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="value-printer-evaluator">
<h3>value_printer_evaluator<a class="headerlink" href="#value-printer-evaluator" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">value_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the values of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">value_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>