class_center_sample_kernel.cu 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_HIP
#include <hiprand.h>
#include <hiprand_kernel.h>

#include <hipcub/hipcub.hpp>
typedef hiprandState curandState;
namespace cub = hipcub;
#else
#include <curand.h>
#include <curand_kernel.h>

#include <cub/cub.cuh>
#endif

#include <iterator>
#include <random>

#include "paddle/fluid/framework/tensor_util.h"
33
#include "paddle/phi/core/enforce.h"
34 35

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
W
Wen Sun 已提交
36
#include "paddle/fluid/distributed/collective/process_group.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {
#define CUDA_KERNEL_LOOP(i, n)                            \
  for (int32_t i = blockIdx.x * blockDim.x + threadIdx.x, \
               step = blockDim.x * gridDim.x;             \
       i < (n);                                           \
       i += step)

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

inline int32_t NumBlocks(const int32_t n) {
  return std::min((n + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T>
__global__ void RandomSampleClassCenter(const int64_t n,
                                        int64_t seed,
                                        int64_t increment,
                                        const int64_t max_val,
                                        T* buffer) {
  const int id = blockIdx.x * blockDim.x + threadIdx.x;
  curandState localState;
  size_t local_seed =
      (static_cast<size_t>(seed) + 0x9E3779B9U +
       (static_cast<size_t>(id) << 6U) + (static_cast<size_t>(id) >> 2U));
#ifdef PADDLE_WITH_HIP
  hiprand_init(local_seed, id, increment, &localState);
  CUDA_KERNEL_LOOP(i, n) {
    buffer[i] = static_cast<T>(hiprand(&localState) % max_val);
  }
#else
  curand_init(local_seed, id, increment, &localState);
  CUDA_KERNEL_LOOP(i, n) {
    buffer[i] = static_cast<T>(curand(&localState) % max_val);
  }
#endif
}

template <typename T>
__global__ void Range(const int64_t n, T* out) {
  CUDA_KERNEL_LOOP(i, n) { out[i] = static_cast<T>(i); }
}

template <typename T>
__global__ void MarkPositiveClassCenter(const int64_t n,
                                        const int64_t rank,
                                        const T* class_interval_ptr,
                                        const int num_classes,
                                        const T* labels,
                                        T* out) {
  CUDA_KERNEL_LOOP(i, n) {
    T label = labels[i] - class_interval_ptr[rank];
    if (label >= 0 && label < num_classes) {
      out[label] = label - num_classes;
    }
  }
}

template <typename T>
__device__ void FindIntervalIndex(const T* class_interval_ptr,
                                  const int64_t nranks,
                                  const T value,
                                  int64_t* find_index) {
  int64_t start = 0;
  int64_t end = nranks;
  int64_t mid = ((end - start) >> 1) + start + 1;
  while (start < end) {
    if (class_interval_ptr[mid] == value) break;
    if (class_interval_ptr[mid] > value)
      end = mid - 1;
    else
      start = mid;
    mid = ((end - start) >> 1) + start + 1;
  }
  *find_index = min(mid, end);
}

template <typename T>
__global__ void GetClassCenterBound(const int64_t n,
                                    const int64_t nranks,
                                    const T* class_interval_ptr,
                                    const T* key_ptr,
                                    const T* value_ptr,
                                    T* bound_index,
                                    T* bound_value) {
  CUDA_KERNEL_LOOP(i, n) {
    if (i != 0) {
      int64_t cur_index, pre_index;
      FindIntervalIndex(class_interval_ptr, nranks, key_ptr[i], &cur_index);
      FindIntervalIndex(class_interval_ptr, nranks, key_ptr[i - 1], &pre_index);
      if (cur_index > pre_index) {
        assert(cur_index < nranks);
#pragma unroll
        for (int32_t j = pre_index + 1; j <= cur_index; ++j) {
          bound_index[j] = static_cast<T>(i);
          bound_value[j] = value_ptr[i];
        }
      }
    }
  }
  CUDA_KERNEL_LOOP(i, nranks + 1) {
    int64_t first_index, last_index;
    FindIntervalIndex(class_interval_ptr, nranks, key_ptr[0], &first_index);
    FindIntervalIndex(class_interval_ptr, nranks, key_ptr[n - 1], &last_index);
    if (i <= first_index) {
      bound_index[i] = 0;
      bound_value[i] = value_ptr[0];
    } else if (i > last_index) {
      bound_index[i] = n;
      bound_value[i] = value_ptr[n - 1] + 1;
    }
  }
}

template <typename T>
__global__ void GetRemappedLabel(const int64_t n,
                                 const int64_t nranks,
                                 const T* sampled_class_interval_ptr,
                                 const T* bound_index,
                                 const T* bound_value,
                                 const T* label_map_key,
                                 T* label_map_value,
                                 T* mapped_label) {
  CUDA_KERNEL_LOOP(i, n) {
#pragma unroll
    for (int64_t j = 0; j < nranks; j++) {
      if (i >= bound_index[j] && i < bound_index[j + 1]) {
        label_map_value[i] =
            label_map_value[i] - bound_value[j] + sampled_class_interval_ptr[j];
      }
    }
    mapped_label[label_map_key[i]] = label_map_value[i];
  }
}

// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T* pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}

#undef CUDA_KERNEL_LOOP

template <typename T>
class NotEqualToPreviousAdjacentIterator {
 public:
  using self_type = NotEqualToPreviousAdjacentIterator;
  using value_type = T;
  using difference_type = std::ptrdiff_t;
  using pointer = T*;
  using reference = T;
  using iterator_category = std::input_iterator_tag;

 public:
  __host__ __device__ __forceinline__
  NotEqualToPreviousAdjacentIterator(const T* arr, int64_t offset)
      : arr_(arr), offset_(offset) {}

  __host__ __device__ __forceinline__ reference operator*() const {
    return offset_ == 0 ? 0 : (arr_[offset_] == arr_[offset_ - 1] ? 0 : 1);
  }

  template <typename Distance>
  __host__ __device__ __forceinline__ self_type operator+(Distance n) const {
    self_type ret(arr_, offset_ + n);
    return ret;
  }

  template <typename Distance>
  __host__ __device__ __forceinline__ self_type operator-(Distance n) const {
    self_type ret(arr_, offset_ - n);
    return ret;
  }

  template <typename Distance>
  __host__ __device__ __forceinline__ reference operator[](Distance n) const {
    return *(*this + n);
  }

 private:
  const T* arr_;
  int64_t offset_;
};

template <typename T>
struct ActualNumSampledFunctor {
  __host__ __device__ __forceinline__ T operator()(const T& a,
                                                   const T& b) const {
    return max(num_samples, (b - a));
  }
  T num_samples;
  explicit ActualNumSampledFunctor(const T num) : num_samples(num) {}
};

template <typename T, typename Context>
class MemoryBuffer {
 public:
  MemoryBuffer(const int num_buffer_ele,
               const int num_temp_ele,
               const int nranks,
               const Context& dev_ctx) {
    offset1 = 0;
    offset2 = offset1 + num_buffer_ele;
    offset3 = offset2 + num_buffer_ele;
    offset4 = offset3 + num_buffer_ele;
    offset5 = offset4 + num_buffer_ele;
    offset6 = offset5 + (nranks + 1);
    offset7 = offset6 + (nranks + 1);
    offset8 = offset7 + (nranks + 1);
    offset9 = offset8 + num_temp_ele;

    buffer.Resize({4 * num_buffer_ele + 3 * (nranks + 1) + num_temp_ele});
    buffer_ptr = dev_ctx.template Alloc<T>(&buffer);
  }

  T* cub_sort_keys_ptr() { return buffer_ptr + offset1; }
  T* cub_sort_keys_out_ptr() { return buffer_ptr + offset2; }
  T* cub_sort_values_ptr() { return buffer_ptr + offset3; }
  T* cub_sort_values_out_ptr() { return buffer_ptr + offset4; }
  T* bound_index_ptr() { return buffer_ptr + offset5; }
  T* bound_value_ptr() { return buffer_ptr + offset6; }
  T* class_interval_ptr() { return buffer_ptr + offset7; }
  void* cub_temp_storage_ptr() {
    return reinterpret_cast<void*>(buffer_ptr + offset8);
  }

 private:
  DenseTensor buffer;
  T* buffer_ptr;
  int offset1;
  int offset2;
  int offset3;
  int offset4;
  int offset5;
  int offset6;
  int offset7;
  int offset8;
  int offset9;
};

template <typename T, typename Context>
void ClassCenterSampleKernel(const Context& dev_ctx,
                             const DenseTensor& label,
                             int num_classes,
                             int num_samples,
                             int ring_id,
                             int rank,
                             int nranks,
                             bool fix_seed,
                             int seed,
                             DenseTensor* remapped_label,
                             DenseTensor* sampled_local_class_center) {
  PADDLE_ENFORCE_GT(num_classes,
                    0,
                    errors::InvalidArgument(
                        "The value 'num_classes' for Op(class_center_sample) "
                        "must be greater than 0, "
                        "but the value given is %d.",
                        num_classes));

  PADDLE_ENFORCE_GT(num_samples,
                    0,
                    errors::InvalidArgument(
                        "The value 'num_samples' for Op(class_center_sample) "
                        "must be greater than 0, "
                        "but the value given is %d.",
                        num_samples));

  PADDLE_ENFORCE_LE(num_samples,
                    num_classes,
                    errors::InvalidArgument(
                        "The value 'num_samples' for Op(class_center_sample) "
                        "must be less than or equal to %d, "
                        "but the value given is %d.",
                        num_classes,
                        num_samples));

  auto place = dev_ctx.GetPlace();

  int batch_size = label.numel();
  // Algorithm:
  // We first randomly generate a value in [0, num_classes) on each position
  // in a array(shape[num_classes]). Then, we mark the element as negative
  // value in the array according input label. Now, we can sort the array
  // by ascending to ensure that the positive class center always in the
  // front of the sorted array. So, we can get the sampled class center
  // index by sorted keys. Finally, we can get the rempped label by remap
  // the input label according sampled class center.

  // step 1: Calculate num classes per device using nccl all reduce
  std::vector<T> shard_dim_vec(nranks + 1, 0);
  shard_dim_vec[rank + 1] = num_classes;
  DenseTensor num_classes_per_device;
  paddle::framework::TensorFromVector(
      shard_dim_vec, dev_ctx, &num_classes_per_device);
  T* num_classes_per_device_ptr = num_classes_per_device.data<T>();

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (nranks > 1) {
    auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(ring_id)) {
      // Use ProcessGroup
      paddle::distributed::ProcessGroup* pg = map->get(ring_id);
      std::vector<phi::DenseTensor> in_tensor;
      std::vector<phi::DenseTensor> out_tensor;
      in_tensor.push_back(num_classes_per_device);
      out_tensor.push_back(num_classes_per_device);

      paddle::distributed::AllreduceOptions opts;
      opts.reduce_op = paddle::distributed::ReduceOp::SUM;
      auto task = pg->AllReduce(in_tensor, out_tensor, opts);
      task->Wait();
    } else {
      const auto& comm = paddle::platform::NCCLCommContext::Instance().Get(
          ring_id, dev_ctx.GetPlace());
      // use global calculate stream
      const auto calcu_stream =
          static_cast<GPUContext*>(
              paddle::platform::DeviceContextPool::Instance().Get(
                  dev_ctx.GetPlace()))
              ->stream();
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::ncclAllReduce(
          num_classes_per_device_ptr,
          num_classes_per_device_ptr,
          num_classes_per_device.numel(),
          paddle::platform::ToNCCLDataType(
              paddle::framework::TransToProtoVarType(
                  num_classes_per_device.dtype())),
          ncclSum,
          comm->comm(),
          calcu_stream));
    }
  }
#endif

  // step 2: Determine temporary device storage requirements
  int num_buffer_ele = std::max(batch_size, num_classes);
  size_t cub_sort_temp_store_size = 0;
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceRadixSort::SortPairs<T, T>(nullptr,
                                             cub_sort_temp_store_size,
                                             nullptr,
                                             nullptr,
                                             nullptr,
                                             nullptr,
                                             num_buffer_ele,
                                             0,
                                             sizeof(T) * 8,
                                             dev_ctx.stream())));

  size_t cub_sum_temp_store_size = 0;
  NotEqualToPreviousAdjacentIterator<T> unique_counting_iter_temp(nullptr, 0);
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveSum<NotEqualToPreviousAdjacentIterator<T>, T*>(
          nullptr,
          cub_sum_temp_store_size,
          unique_counting_iter_temp,
          nullptr,
          batch_size,
          dev_ctx.stream())));

  size_t cub_scan_temp_store_size = 0;
  ActualNumSampledFunctor<T> actual_num_sampled_op_temp(num_samples);
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveScan(nullptr,
                                      cub_scan_temp_store_size,
                                      num_classes_per_device_ptr,
                                      num_classes_per_device_ptr,
                                      actual_num_sampled_op_temp,
                                      nranks + 1,
                                      dev_ctx.stream())));

  size_t cub_temp_storage_bytes =
      std::max(std::max(cub_sort_temp_store_size, cub_scan_temp_store_size),
               cub_sum_temp_store_size);
  int num_temp_ele = cub_temp_storage_bytes / sizeof(T) + 1;

  // step 3: Alloc buffer memory so that we can reuse allocated memory
  MemoryBuffer<T, Context> memory_buffer =
      MemoryBuffer<T, Context>(num_buffer_ele, num_temp_ele, nranks, dev_ctx);

  T* cub_sort_keys_ptr = memory_buffer.cub_sort_keys_ptr();
  T* cub_sort_keys_out_ptr = memory_buffer.cub_sort_keys_out_ptr();
  T* cub_sort_values_ptr = memory_buffer.cub_sort_values_ptr();
  T* cub_sort_values_out_ptr = memory_buffer.cub_sort_values_out_ptr();
  T* bound_index_ptr = memory_buffer.bound_index_ptr();
  T* bound_value_ptr = memory_buffer.bound_value_ptr();
  T* class_interval_ptr = memory_buffer.class_interval_ptr();
  void* cub_temp_storage_ptr = memory_buffer.cub_temp_storage_ptr();

  // step 4: Calculate class interval among nranks
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveSum(cub_temp_storage_ptr,
                                     cub_temp_storage_bytes,
                                     num_classes_per_device_ptr,
                                     class_interval_ptr,
                                     nranks + 1,
                                     dev_ctx.stream())));

  // step 5: random sample negative class center
  uint64_t seed_data;
  uint64_t increment;
  int vec_size = VectorizedSize<T>(cub_sort_keys_ptr);
  auto offset = ((num_classes - 1) /
                     (NumBlocks(num_classes) * kNumCUDAThreads * vec_size) +
                 1) *
                vec_size;
  // auto gen_cuda = paddle::framework::DefaultCUDAGenerator(device_id);
  auto gen_cuda = dev_ctx.GetGenerator();
  if (!fix_seed) {
    auto seed_offset = gen_cuda->IncrementOffset(offset);
    seed_data = seed_offset.first;
    increment = seed_offset.second;
  } else {
    seed_data = seed + rank;
    increment = offset;
  }
  RandomSampleClassCenter<T>
      <<<NumBlocks(num_classes), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
          num_classes, seed_data, increment, num_classes, cub_sort_keys_ptr);

  // step 6: mark positive class center as negative value
  // fill the sort values to index 0, 1, ..., batch_size-1
  MarkPositiveClassCenter<T>
      <<<NumBlocks(batch_size), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
          batch_size,
          rank,
          class_interval_ptr,
          num_classes,
          label.data<T>(),
          cub_sort_keys_ptr);
  Range<T><<<NumBlocks(num_buffer_ele), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
      num_buffer_ele, cub_sort_values_ptr);

  // step 7: sort class center by ascending, so that positive class center
  // always be sampled.
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceRadixSort::SortPairs<T, T>(cub_temp_storage_ptr,
                                             cub_temp_storage_bytes,
                                             cub_sort_keys_ptr,
                                             cub_sort_keys_out_ptr,
                                             cub_sort_values_ptr,
                                             cub_sort_values_out_ptr,
                                             num_classes,
                                             0,
                                             sizeof(T) * 8,
                                             dev_ctx.stream())));

  // step 8: sort input label ascending
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceRadixSort::SortPairs<T, T>(cub_temp_storage_ptr,
                                             cub_temp_storage_bytes,
                                             label.data<T>(),
                                             cub_sort_keys_out_ptr,
                                             cub_sort_values_ptr,
                                             cub_sort_keys_ptr,
                                             batch_size,
                                             0,
                                             sizeof(T) * 8,
                                             dev_ctx.stream())));

  // step 9: Calculate new index using InclusiveSum on ascending sorted input
  // label
  NotEqualToPreviousAdjacentIterator<T> unique_counting_iter(
      cub_sort_keys_out_ptr, 0);
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveSum<NotEqualToPreviousAdjacentIterator<T>, T*>(
          cub_temp_storage_ptr,
          cub_temp_storage_bytes,
          unique_counting_iter,
          cub_sort_values_ptr,
          batch_size,
          dev_ctx.stream())));

  // step 10: Calculate new class center bound among ranks
  GetClassCenterBound<T>
      <<<NumBlocks(batch_size), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
          batch_size,
          nranks,
          class_interval_ptr,
          cub_sort_keys_out_ptr,
          cub_sort_values_ptr,
          bound_index_ptr,
          bound_value_ptr);

  // step 11: Calculate actual number of sampled class per device.
  // Since maybe num_positive_class_center > num_samples,
  // we need to ensure all positive class center per device are sampled.
  ActualNumSampledFunctor<T> actual_num_sampled_op(num_samples);
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveScan(cub_temp_storage_ptr,
                                      cub_temp_storage_bytes,
                                      bound_value_ptr,
                                      num_classes_per_device_ptr,
                                      actual_num_sampled_op,
                                      nranks + 1,
                                      dev_ctx.stream())));

  // step 12: Calculate actual sampled class interval among nranks
  PADDLE_ENFORCE_GPU_SUCCESS(
      (cub::DeviceScan::InclusiveSum(cub_temp_storage_ptr,
                                     cub_temp_storage_bytes,
                                     num_classes_per_device_ptr,
                                     class_interval_ptr,
                                     nranks + 1,
                                     dev_ctx.stream())));

  // step 13: Get remapped label for output
  GetRemappedLabel<T>
      <<<NumBlocks(batch_size), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
          batch_size,
          nranks,
          class_interval_ptr,
          bound_index_ptr,
          bound_value_ptr,
          cub_sort_keys_ptr,
          cub_sort_values_ptr,
          dev_ctx.template Alloc<T>(remapped_label));

  // step 14: Get sampled class center for output
574 575 576 577 578
  phi::Copy<Context>(dev_ctx,
                     num_classes_per_device,
                     phi::CPUPlace(),
                     true,
                     &num_classes_per_device);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
  T actual_num_samples = num_classes_per_device.data<T>()[rank + 1];
  sampled_local_class_center->Resize(phi::make_ddim({actual_num_samples}));

  T* sampled_local_class_center_ptr =
      dev_ctx.template Alloc<T>(sampled_local_class_center);
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       sampled_local_class_center_ptr,
                       dev_ctx.GetPlace(),
                       cub_sort_values_out_ptr,
                       actual_num_samples * sizeof(T),
                       nullptr);
}
}  // namespace phi

PD_REGISTER_KERNEL(class_center_sample,
                   GPU,
                   ALL_LAYOUT,
                   phi::ClassCenterSampleKernel,
                   int64_t,
                   int) {}