p_norm_op.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/p_norm_op.h"
#include <memory>
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class PnormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddAttr<float>("porder",
29 30 31
                   "(float, default 2) The porder is the p order vector norm "
                   "to calculate. Available for porder=0, inf, -inf and any "
                   "real number.")
32 33
        .SetDefault(2.0f);
    AddAttr<int>("axis",
34
                 "The axis on which to apply norm operation. If axis < 0, "
35 36 37 38
                 "the dimension to pnorm is rank(X) + axis. -1 is "
                 "the last dimension.")
        .SetDefault(-1);
    AddAttr<float>("epsilon",
39
                   "(float, default 1e-12) The epsilon value is used "
40 41 42 43
                   "to avoid division by zero.")
        .SetDefault(1.0e-12f);
    AddAttr<bool>(
        "keepdim",
44
        "(bool, default false) Whether to keep the dimensions as the input.")
45
        .SetDefault(false);
myq406450149's avatar
myq406450149 已提交
46 47 48 49 50

    AddAttr<bool>("asvector",
                  "(bool, default false) as vector norm when axis is None and "
                  "input is matrix, ")
        .SetDefault(false);
51
    AddOutput("Out", "(Tensor) Output result tensor of p-norm");
52
    AddComment(R"DOC(
53 54
Pnorm Operator.
Given a tensor X, compute Lp-norm of X.
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69
When p = 0, defining $0^0 = 0$, the zero-norm of X is simply the number of non-zero elements of X.
$$
||X||_{0} = \lim_{p \rightarrow 0} \sum_i |x_i|^p
$$

When p = inf, the inf-norm of X is the maximum element of X.
$$
||X||_\infty = \max_i |x_i|
$$

When p = -inf, the negative-inf-norm of X is the minimum element of X.
$$
||X||_{-\infty} = \min_i |x_i|
$$
70

71
Otherwise, the p-norm of X follows the formula,
72
$$
73
||X||_{p} = (\sum_i |x_i|^p)^{1/p}
74
$$
75
where, $\sum_i $ is calculated along the `axis` dimension.
76 77 78 79 80 81 82 83 84 85 86

)DOC");
  }
};

class PnormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "p_norm");
87 88
    auto x_dim = ctx->GetInputDim("X");
    auto x_rank = x_dim.size();
89 90
    int axis = ctx->Attrs().Get<int>("axis");
    bool keepdim = ctx->Attrs().Get<bool>("keepdim");
91 92 93 94 95 96 97 98 99 100 101 102 103 104

    PADDLE_ENFORCE_GE(axis, -x_rank,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], R is "
                          "the rank of Input(X). But received axis: %d, R: %d. "
                          "Current Input(X)'s shape is=[%s].",
                          axis, x_rank, x_dim));
    PADDLE_ENFORCE_LT(axis, x_rank,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], R is "
                          "the rank of Input(X). But received axis: %d, R: %d. "
                          "Current Input(X)'s shape is=[%s].",
                          axis, x_rank, x_dim));

105
    std::vector<int> reduce_dims;
myq406450149's avatar
myq406450149 已提交
106 107 108
    bool asvector = ctx->Attrs().Get<bool>("asvector");
    if (asvector) {
      reduce_dims.emplace_back(1);
myq406450149's avatar
myq406450149 已提交
109 110 111 112
      if (keepdim) {
        for (int i = 1; i < x_dim.size(); ++i) {
          reduce_dims.emplace_back(1);
        }
113
        x_dim = phi::make_ddim(reduce_dims);
myq406450149's avatar
myq406450149 已提交
114
      }
myq406450149's avatar
myq406450149 已提交
115 116 117 118 119
    } else {
      if (axis < 0) axis = x_dim.size() + axis;
      for (int i = 0; i < x_dim.size(); ++i) {
        if (i != axis) reduce_dims.emplace_back(x_dim[i]);
      }
Z
Zhong Hui 已提交
120 121 122
      if (reduce_dims.size() == 0) {
        reduce_dims.emplace_back(1);
      }
123
    }
124 125
    x_dim[axis] = 1;

126
    if (keepdim) {
127
      ctx->SetOutputDim("Out", x_dim);
128
    } else {
129
      ctx->SetOutputDim("Out", phi::make_ddim(reduce_dims));
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    }
  }
};

class PnormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "p_norm");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "p_norm");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@GRAD", "p_norm");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

template <typename T>
class PnormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("p_norm_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(p_norm, ops::PnormOp, ops::PnormOpMaker,
                  ops::PnormOpGradOpMaker<paddle::framework::OpDesc>,
                  ops::PnormOpGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(p_norm_grad, ops::PnormOpGrad);
REGISTER_OP_CPU_KERNEL(p_norm, ops::PnormKernel<CPU, float>,
                       ops::PnormKernel<CPU, double>);
REGISTER_OP_CPU_KERNEL(p_norm_grad, ops::PnormGradKernel<CPU, float>,
                       ops::PnormGradKernel<CPU, double>);
178 179 180 181 182 183 184 185
REGISTER_OP_VERSION(p_norm)
    .AddCheckpoint(
        R"ROC(
        Upgrade p_norm, add 1 attribute [asvector].
      )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "asvector",
            "Compute as vector when axis is None and input is matrix", false));