model_parallel_optimizer.py 10.9 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from __future__ import print_function
from __future__ import division

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op


class ModelParallelHelper(object):
    def __init__(self, role_maker, wait_port=True, megatron_dp=False):
        self.wait_port = wait_port
        self.role_maker = role_maker
        self.megatron_dp = megatron_dp

    def update_startup_program(self,
                               startup_program=None,
                               inner_parallelism=None):
        self.startup_program = startup_program

        nranks = self.role_maker._worker_num()
        rank = self.role_maker._worker_index()
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[rank]

        # Create ring 0 for all model parallel parts within a single model
        mp_endpoints = []
        mp_rank = rank % inner_parallelism
        mp_id = rank // inner_parallelism
        for idx, ep in enumerate(endpoints):
            if idx // inner_parallelism == mp_id:
                mp_endpoints.append(ep)
        print("model parallel eps:{}, rank{}".format(mp_endpoints, mp_rank))
        self._init_communicator(self.startup_program, current_endpoint,
                                mp_endpoints, mp_rank, 0, self.wait_port)
        self._broadcast_params(0, broadcast_distributed_weight=False)

        print("megatron group size: {}".format(inner_parallelism))
        print("megatron rank: {}".format(mp_rank))
        print("megatron endpoints: {}".format(mp_endpoints))

        if self.megatron_dp:
            mp_num = len(endpoints) // inner_parallelism
            if mp_num == 1: return
            # Create rings for gpus as the same model parallel part
            eps = []
            dp_rank = rank // inner_parallelism
            dp_id = rank % inner_parallelism
            #if dp_rank == 1: dp_rank =0
            #if dp_rank == 0: dp_rank =1
            ring_id = 1
            for idx, ep in enumerate(endpoints):
                if idx % inner_parallelism == dp_id:
                    eps.append(ep)
            #ep = eps.pop(0)
            #eps.insert(1, ep)
            print("data parallel eps:{}, rank{}".format(eps, dp_rank))
            self._init_communicator(self.startup_program, current_endpoint, eps,
                                    dp_rank, ring_id, self.wait_port)
            self._broadcast_params(ring_id, broadcast_distributed_weight=True)

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
                OP_ROLE_KEY: OpRole.Forward,
            })
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
            })

    def _broadcast_params(self, ring_id, broadcast_distributed_weight):
        block = self.startup_program.global_block()
        for param in block.iter_parameters():
            if not broadcast_distributed_weight and param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})


class ModelParallelOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ModelParallelOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
            "LarsOptimizer",
            "LambOptimizer",
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self.megatron_dp = False

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(ModelParallelOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        self.inner_parallelism = user_defined_strategy.model_parallel_configs[
            'parallelism']

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if self.user_defined_strategy.model_parallel == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.model_parallel = False
        dist_strategy.model_parallel_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.model_parallel = True
        dist_strategy.model_parallel_configs = {"parallelism": 1, }

    # the following function will be used by AMP if both Megatron and AMP are turn on together.
    def apply_gradients(self, params_grads):
        return self.minimize_impl(params_grads=params_grads)

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

        # (TODO) check the order of metaoptimizer
        # (TODO) check the params_grads
        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, self.startup_program, parameter_list, no_grad_set)

        self.main_program = loss.block.program
        self.inner_parallelism = self.inner_parallelism
        self.nranks = len(endpoints)

        pipeline_helper = ModelParallelHelper(self.role_maker)
        pipeline_helper.update_startup_program(self.startup_program,
                                               self.inner_parallelism)

        assert self.nranks % self.inner_parallelism == 0

        if self.megatron_dp:
            # data parallelism
            dp_parallelism = self.nranks // self.inner_parallelism

            self._transpile_main_program(loss, dp_parallelism)
        return optimize_ops, params_grads

    def _transpile_main_program(self, loss, dp_parallelism):
        self._insert_loss_grad_ops(loss, dp_parallelism)
        ring_id = 1
        print("ring_id: ", ring_id)
        # for ring_id in range(1, dp_parallelism + 1):
        self._insert_allreduce_ops(loss, ring_id)

    def _insert_loss_grad_ops(self, loss, dp_parallelism):
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
        block = loss.block
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / dp_parallelism,
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, loss, ring_id):
        block = loss.block
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    #if param.is_distributed:
                    #    continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in list(enumerate(block.ops)):
            if is_optimizer_op(op):
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break