conv_cudnn_op.cu 59.9 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
17

L
liym27 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
22 23 24
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
L
liym27 已提交
25
#include "paddle/fluid/operators/conv_cudnn_helper.h"
26
#endif
L
liym27 已提交
27
#include "paddle/fluid/operators/conv_op.h"
28
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

46 47 48 49
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
50 51 52 53 54
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
58 59 60 61 62 63 64 65
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
66

L
liym27 已提交
67
    bool exhaustive_search =
68 69
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
70 71 72 73 74 75
    bool deterministic = FLAGS_cudnn_deterministic;
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));
L
liym27 已提交
76 77 78 79 80 81

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

82 83
    auto dtype = platform::CudnnDataType<T>::type;

84 85 86 87
#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
88 89 90 91 92 93 94 95
    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
96
#endif
97 98 99 100
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
101 102 103
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
104
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
105
    T* output_data = nullptr;
106 107
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
108 109 110 111 112 113 114 115 116
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
117 118 119 120 121 122 123 124 125 126 127
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
128 129 130 131 132
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
133
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
134
    framework::DDim in_data_dims;
135 136 137 138 139 140 141 142 143 144 145
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
146 147 148 149 150 151

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
152
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
153 154 155 156 157 158 159

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
160 161 162 163 164 165 166

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
167 168 169 170 171 172

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
201
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
202 203 204 205
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
206
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
207 208 209 210
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
211 212
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
213 214 215
      }

    } else {
216
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
217 218 219 220 221 222 223 224 225 226 227 228
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
229
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
230 231

    // ------------------- cudnn descriptors ---------------------
232 233 234 235 236 237 238
    ConvArgs args{&transformed_input,
                  &transformed_filter_channel,
                  &transformed_output,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
L
liym27 已提交
239 240 241

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
242 243 244 245 246
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
247 248 249 250
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
251 252

#ifdef PADDLE_WITH_HIP
253
    // MIOPEN need to set groups in cdesc in miopen_desc.h
254 255 256
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), groups);
#else
A
AshburnLee 已提交
257 258
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn());
259
#endif
L
liym27 已提交
260

261
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
262 263 264
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
265 266
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        args.cdesc.desc(), groups));
L
liym27 已提交
267
    groups = 1;
268 269 270 271
#endif
#ifdef PADDLE_WITH_HIP
    // MIOPEN do not set groups in wdesc after set groups in cdesc
    groups = 1;
L
liym27 已提交
272
#endif
273 274 275
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
276 277
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
278 279 280 281 282 283 284 285 286 287 288 289

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
290 291 292

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
293
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
294 295
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
296 297 298 299
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t algo{};
    using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
300
    workspace_size = search::GetWorkspaceSize(args);
301 302
    algo = search::Find<T>(args, exhaustive_search, deterministic,
                           workspace_size, ctx);
303
#else
L
liym27 已提交
304 305
    cudnnConvolutionFwdAlgo_t algo{};
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
306
    algo = search::Find<T>(args, exhaustive_search, deterministic, ctx);
L
liym27 已提交
307
    workspace_size = search::GetWorkspaceSize(args, algo);
308
#endif
L
liym27 已提交
309

310
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
311 312 313 314 315 316 317 318 319
    // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
    // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
    if (ctx.Attr<int>("groups") > 1) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
    }
#endif

L
liym27 已提交
320
    // ------------------- cudnn conv forward ---------------------
321
    ScalingParamType<T> alpha = 1.0f;
322 323
    ScalingParamType<T> beta = 0.0f;

324 325 326 327 328 329 330
// NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
// ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
// VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
331
          PADDLE_ENFORCE_GPU_SUCCESS(
332 333 334 335 336 337 338 339
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args.idesc.desc(), input_data,
                  args.wdesc.desc(), filter_data, args.cdesc.desc(), algo,
                  &beta, args.odesc.desc(), output_data, workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
L
liym27 已提交
340 341 342
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
343
            PADDLE_ENFORCE_GPU_SUCCESS(
344 345 346 347 348 349
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
350 351 352
          },
          workspace_size);
    }
353
#endif
L
liym27 已提交
354

355
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
356 357 358 359 360 361 362 363 364 365 366
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
367 368 369
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
388

L
liym27 已提交
389
    bool exhaustive_search =
390 391
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
L
liym27 已提交
392
    bool deterministic = FLAGS_cudnn_deterministic;
393 394 395 396 397 398
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
399 400 401
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

402
    auto dtype = platform::CudnnDataType<T>::type;
403 404 405 406 407

#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
408 409 410 411
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
412
#endif
413 414 415 416
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
417 418 419 420
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
421 422
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
423

424 425 426
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
440 441
        // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
        // the data of input_grad to transformed_input_grad_channel.
442
        if (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) {
443 444 445
          TransToChannelFirst<platform::CUDADeviceContext, T>(
              ctx, input_grad, &transformed_input_grad_channel);
        }
L
liym27 已提交
446 447
      }
    } else {
448 449
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
450 451 452 453 454
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
473 474
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
475
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
476
    framework::DDim in_data_dims;
477 478 479 480 481 482 483 484 485 486
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
487 488 489 490 491 492 493
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
494
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
495 496 497 498 499 500 501 502 503 504
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
505 506 507 508 509 510
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
511 512 513 514

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
515 516 517 518 519 520 521 522 523 524 525 526 527 528
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
551
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
552 553 554 555
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
556
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
557 558 559 560
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
561 562
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
582
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
583 584 585 586 587
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
588
                   &transformed_filter_channel,
L
liym27 已提交
589 590 591
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
592 593
                   dilations,
                   dtype};
L
liym27 已提交
594
    ConvArgs args2{&transformed_input,
595
                   &transformed_filter_grad_channel,
L
liym27 已提交
596 597 598
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
599 600
                   dilations,
                   dtype};
L
liym27 已提交
601 602

    auto handle = dev_ctx.cudnn_handle();
603 604 605 606 607
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
608 609 610 611 612 613
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
614 615 616 617 618 619 620 621 622 623 624
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
625 626 627

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
628
    int group_offset_filter = transformed_filter_channel.numel() / groups;
629 630 631 632 633 634 635
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
636 637 638 639
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
640
#endif
641 642 643 644
    // input data workspace_size
    size_t workspace_size_d = 0;
    // weight workspace_size
    size_t workspace_size_w = 0;
645 646
    int iwo_groups = groups;
    int c_groups = 1;
L
liym27 已提交
647

648
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
649 650 651 652 653 654 655 656 657 658
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
659 660 661
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
662 663
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
L
liym27 已提交
664

665 666
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
667 668
      workspace_size_d =
          std::max(workspace_size_d, search1::GetWorkspaceSize(args1));
669
      data_algo = search1::Find<T>(args1, exhaustive_search, deterministic,
670
                                   workspace_size_d, ctx);
671
#else
L
liym27 已提交
672 673
      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
674
          search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
675 676
      workspace_size_d = std::max(workspace_size_d,
                                  search1::GetWorkspaceSize(args1, data_algo));
677
#endif
L
liym27 已提交
678 679 680 681
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
682
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
683
      args2.handle = handle;
684 685 686 687
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
688 689
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
690 691
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
692 693
      workspace_size_w =
          std::max(workspace_size_w, search2::GetWorkspaceSize(args2));
694
      filter_algo = search2::Find<T>(args2, exhaustive_search, deterministic,
695
                                     workspace_size_w, ctx);
696
#else
L
liym27 已提交
697 698
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
699
          search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
700 701
      workspace_size_w = std::max(
          workspace_size_w, search2::GetWorkspaceSize(args2, filter_algo));
702
#endif
L
liym27 已提交
703 704 705
    }

    // ------------------- cudnn conv backward data ---------------------
706
    ScalingParamType<T> alpha = 1.0f;
R
ronnywang 已提交
707 708 709 710
#ifdef PADDLE_WITH_HIP
    // MIOPEN ONLY support beta to be 0.0f
    ScalingParamType<T> beta = 0.0f;
#else
711 712
    ScalingParamType<T> beta =
        (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) ? 1.0f : 0.0f;
R
ronnywang 已提交
713
#endif
714 715
    VLOG(4) << "Conv_grad: use_addto = "
            << (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto"));
716

L
liym27 已提交
717
    if (input_grad) {
718 719
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
720
#ifdef PADDLE_WITH_HIP
721
      if (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) {
R
ronnywang 已提交
722 723 724 725 726
        Tensor temp_tensor(transformed_input_grad.type());
        temp_tensor.Resize(transformed_input_grad.dims());
        T* temp_tensor_data = temp_tensor.mutable_data<T>(ctx.GetPlace());
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
727
              PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
728 729 730 731
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(), temp_tensor_data,
732
                      cudnn_workspace_ptr, workspace_size_d));
R
ronnywang 已提交
733
            },
734
            workspace_size_d);
735
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
R
ronnywang 已提交
736 737 738 739 740 741 742
            handle, miopenTensorOpAdd, &alpha, args1.idesc.desc(),
            transformed_input_grad_data, &alpha, args1.idesc.desc(),
            temp_tensor_data, &beta, args1.idesc.desc(),
            transformed_input_grad_data));
      } else {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
743
              PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
744 745 746 747 748
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(),
                      transformed_input_grad_data, cudnn_workspace_ptr,
749
                      workspace_size_d));
R
ronnywang 已提交
750
            },
751
            workspace_size_d);
R
ronnywang 已提交
752 753
      }

754
#else
755
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
756 757
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
758
              PADDLE_ENFORCE_GPU_SUCCESS(
759 760 761 762 763
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
764
                      workspace_size_d, &beta, args1.idesc.desc(),
765
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
766
            },
767
            workspace_size_d);
L
liym27 已提交
768
      }
769
#endif
W
wangchaochaohu 已提交
770 771 772
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
773

W
wangchaochaohu 已提交
774 775 776 777
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
778

W
wangchaochaohu 已提交
779 780
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
781
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
782 783 784
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
785
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
786 787 788
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
789 790
      }

791
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
792 793 794 795
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
796 797 798

    // filter_grad do not use inplace addto.
    ScalingParamType<T> beta_filter = 0.0f;
L
liym27 已提交
799 800
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
801
// Because beta is zero, it is unnecessary to reset filter_grad.
802
#ifdef PADDLE_WITH_HIP
803 804
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
805
            PADDLE_ENFORCE_GPU_SUCCESS(
806 807 808 809
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args2.odesc.desc(), output_grad_data,
                    args2.idesc.desc(), input_data, args2.cdesc.desc(),
                    filter_algo, &beta, args2.wdesc.desc(), filter_grad_data,
810
                    cudnn_workspace_ptr, workspace_size_w));
811
          },
812
          workspace_size_w);
813
#else
814
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
815 816
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
817
              PADDLE_ENFORCE_GPU_SUCCESS(
818 819 820 821 822
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
823
                      workspace_size_w, &beta_filter, args2.wdesc.desc(),
824
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
825
            },
826
            workspace_size_w);
L
liym27 已提交
827
      }
828
#endif
829 830 831 832 833

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
850 851 852
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
853 854 855 856 857 858 859 860 861 862 863
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
864 865
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
886

L
liym27 已提交
887
    bool exhaustive_search =
888 889
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
L
liym27 已提交
890
    bool deterministic = FLAGS_cudnn_deterministic;
891 892 893 894 895 896
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
897 898 899 900 901 902 903 904 905
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
906
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
922 923 924 925 926 927
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
942 943 944
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
964
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
997 998 999 1000 1001
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
1013
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
1014
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1015 1016 1017 1018 1019
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1020 1021
        } break;
        case 5: {
1022
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
1023
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1024 1025 1026 1027 1028
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1029 1030
        } break;
        default:
1031 1032
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
1033 1034 1035 1036
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
1037 1038 1039
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
1059
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
1060 1061
    iwo_group = 1;
    c_group = groups;
1062
    groups = 1;
L
liym27 已提交
1063 1064 1065 1066 1067
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    ConvArgs args1{&transformed_ddX,
                   W,
                   &transformed_ddO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{
        &transformed_X, ddW,  &transformed_ddO_channel, strides, padding_common,
        dilations,      dtype};
    ConvArgs args3{&transformed_ddX,
                   dW,
                   &transformed_dO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dX, ddW,  &transformed_dO_channel, strides, padding_common,
        dilations,       dtype};
L
liym27 已提交
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t fwd_algo1 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t fwd_algo2 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
1099 1100 1101 1102 1103 1104 1105 1106
    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
1107
#endif
L
liym27 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1123 1124
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1125

1126 1127
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1128 1129 1130
        workspace_size = search1::GetWorkspaceSize(args1);
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false,
                                     workspace_size, ctx);
1131
#else
L
liym27 已提交
1132
        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1133
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
L
liym27 已提交
1134
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
1135
#endif
L
liym27 已提交
1136 1137 1138 1139 1140 1141 1142 1143
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1144 1145
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1146

1147 1148
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1149 1150 1151 1152
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false,
                                     workspace_size, ctx);
1153
#else
L
liym27 已提交
1154
        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1155
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
L
liym27 已提交
1156 1157
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
1158
#endif
L
liym27 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1168 1169
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1170

1171 1172
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
1173 1174 1175 1176
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo = search3::Find<T>(args3, exhaustive_search, deterministic,
                                     workspace_size, ctx);
1177
#else
L
liym27 已提交
1178 1179
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
1180
          search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1181 1182
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1183
#endif
L
liym27 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1193 1194
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1195

1196 1197
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
1198 1199 1200 1201
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo = search4::Find<T>(args4, exhaustive_search, deterministic,
                                   workspace_size, ctx);
1202
#else
L
liym27 已提交
1203 1204
      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
1205
          search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1206 1207
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1208
#endif
L
liym27 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

1223 1224 1225 1226 1227 1228 1229
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
    // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
    // 0.0f;
    // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
L
liym27 已提交
1230 1231 1232 1233 1234
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
1235
#ifdef PADDLE_WITH_HIP
1236 1237
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1238
              PADDLE_ENFORCE_GPU_SUCCESS(
1239 1240 1241 1242 1243 1244 1245
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args1.idesc.desc(), ddx,
                      args1.wdesc.desc(), w, args1.cdesc.desc(), fwd_algo1,
                      &beta, args1.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1246
#else
1247
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1248 1249
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1250
                PADDLE_ENFORCE_GPU_SUCCESS(
1251 1252 1253 1254 1255 1256 1257
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1258 1259 1260
              },
              workspace_size);
        }
1261
#endif
L
liym27 已提交
1262 1263
      }
      if (ddW) {
1264
#ifdef PADDLE_WITH_HIP
1265 1266 1267
        // MIOPEN ONLY support beta to be 0.0f
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1268
              PADDLE_ENFORCE_GPU_SUCCESS(
1269 1270 1271 1272 1273 1274 1275
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args2.idesc.desc(), x, args2.wdesc.desc(),
                      ddw, args2.cdesc.desc(), fwd_algo2, &beta,
                      args2.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1276
#else
1277
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1278 1279
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1280
                PADDLE_ENFORCE_GPU_SUCCESS(
1281 1282 1283 1284 1285 1286 1287
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1288 1289 1290
              },
              workspace_size);
        }
1291
#endif
L
liym27 已提交
1292 1293 1294 1295 1296 1297
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1298
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1299 1300
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
1301
#ifdef PADDLE_WITH_HIP
1302 1303
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
1304
            PADDLE_ENFORCE_GPU_SUCCESS(
1305 1306 1307 1308 1309 1310 1311
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args3.odesc.desc(), transformed_dy_channel,
                    args3.idesc.desc(), ddx, args3.cdesc.desc(), filter_algo,
                    &beta, args3.wdesc.desc(), dw, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1312
#else
1313
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1314 1315
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1316
              PADDLE_ENFORCE_GPU_SUCCESS(
1317 1318 1319 1320 1321 1322 1323
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1324 1325 1326
            },
            workspace_size);
      }
1327
#endif
L
liym27 已提交
1328 1329 1330 1331
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
1332
#ifdef PADDLE_WITH_HIP
1333 1334
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
1335
            PADDLE_ENFORCE_GPU_SUCCESS(
1336 1337 1338 1339 1340 1341 1342
                platform::dynload::miopenConvolutionBackwardData(
                    handle, &alpha, args4.odesc.desc(), transformed_dy_channel,
                    args4.wdesc.desc(), ddw, args4.cdesc.desc(), data_algo,
                    &beta, args4.idesc.desc(), transformed_dx, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1343
#else
1344
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1345 1346
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1347
              PADDLE_ENFORCE_GPU_SUCCESS(
1348 1349 1350 1351 1352 1353 1354
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1355 1356 1357
            },
            workspace_size);
      }
1358
#endif
L
liym27 已提交
1359

W
wangchaochaohu 已提交
1360 1361 1362 1363
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1364

W
wangchaochaohu 已提交
1365 1366 1367 1368 1369
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1370
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1371 1372
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1373
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1374 1375
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1401 1402 1403 1404 1405 1406 1407 1408
// ROCM has limit thread in depthwise_conv.cu and willl result in accuracy issue
// Use depthwise_conv2d in MIOPEN to resolve this issue
REGISTER_OP_KERNEL(depthwise_conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(depthwise_conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
#else
W
wuhuanzhou 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
#if CUDNN_VERSION_MIN(8, 1, 0)
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);

REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);
#else
L
liym27 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

1463 1464 1465 1466 1467
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
W
wuhuanzhou 已提交
1468
#endif
1469

L
liym27 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1482
#endif