convolution.h 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace funcs {
namespace sparse {

struct Dims4D {
  int dims[4];
  Dims4D(const int batch, const int x, const int y, const int z) {
    dims[0] = batch;
    dims[1] = z;
    dims[2] = y;
    dims[3] = x;
  }
  HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
36 37
template <typename IntT = int>
inline HOSTDEVICE bool Check(const IntT& x,
38 39 40 41 42 43
                             const int& kx,
                             const int& pad,
                             const int& stride,
                             const int dilation,
                             const int kdim,
                             const int xdim) {
44 45
  const IntT lower = x - dilation * kx + pad;
  const IntT uper = x + (kdim - kx - 1) * dilation - pad;
46 47 48 49 50
  return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
51
template <typename IntT = int>
52 53 54 55 56
inline HOSTDEVICE bool Check(const Dims4D& dims,
                             const Dims4D& kernel_dims,
                             const Dims4D& paddings,
                             const Dims4D& dilations,
                             const Dims4D& strides,
57 58 59
                             const IntT x,
                             const IntT y,
                             const IntT z,
60 61 62 63 64 65 66 67 68 69 70 71
                             const int kx,
                             const int ky,
                             const int kz) {
  bool x_valid = Check(
      x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
  bool y_valid = Check(
      y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
  bool z_valid = Check(
      z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
  return (x_valid && y_valid && z_valid);
}

72 73 74 75 76 77
template <typename Dim, typename IntT = int>
inline HOSTDEVICE IntT PointToIndex(const IntT& batch,
                                    const IntT& x,
                                    const IntT& y,
                                    const IntT& z,
                                    const Dim& dims) {
78 79 80 81 82 83
  return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
         y * dims[3] + x;
}

// TODO(zhangkaihuo): use division and multiply to optimize
// modulo operation
84
template <typename Dim, typename IntT = int>
85
inline HOSTDEVICE void IndexToPoint(
86 87
    const IntT index, const Dim& dims, IntT* batch, IntT* x, IntT* y, IntT* z) {
  IntT n = index;
88 89 90 91 92 93 94 95 96 97
  *x = n % dims[3];
  n /= dims[3];
  *y = n % dims[2];
  n /= dims[2];
  *z = n % dims[1];
  n /= dims[1];
  *batch = n;
}

inline void GetOutShape(const DDim& x_dims,
Z
zhangkaihuo 已提交
98
                        const std::vector<int>& kernel_sizes,
99 100 101 102 103 104 105 106
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        DDim* out_dims) {
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
Z
zhangkaihuo 已提交
107
  PADDLE_ENFORCE_EQ(kernel_sizes.size(),
108 109 110 111 112 113
                    5,
                    phi::errors::InvalidArgument(
                        "the shape of kernel should be (D, H, W, C, OC)"));

  // infer out shape
  (*out_dims)[0] = x_dims[0];
Z
zhangkaihuo 已提交
114
  (*out_dims)[4] = kernel_sizes[4];
115 116
  for (int i = 1; i < 4; i++) {
    (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
Z
zhangkaihuo 已提交
117
                      dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                         strides[i - 1] +
                     1;
  }
}

inline void ResetSubmKernelSizeAndStrides(const DDim& kernel_dims,
                                          std::vector<int>* paddings,
                                          std::vector<int>* strides) {
  for (uint64_t i = 0; i < paddings->size(); i++) {
    (*paddings)[i] = kernel_dims[i] / 2;
    (*strides)[i] = 1;
  }
}

template <typename T, typename Context>
inline void SubmPreProcess(const Context& dev_ctx,
                           const SparseCooTensor& x,
                           const DenseTensor& kernel,
Z
zhangkaihuo 已提交
136
                           const DenseTensor& out_grad,
137 138 139 140 141 142 143 144 145 146
                           const int in_channels,
                           const int out_channels,
                           const int half_kernel_size,
                           DenseTensor* kernel_grad,
                           DenseTensor* x_grad) {
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  T* d_kernel_ptr = kernel_grad->data<T>();
  blas.GEMM(CblasTrans,
            CblasNoTrans,
            x.non_zero_elements().dims()[1],
Z
zhangkaihuo 已提交
147
            out_grad.dims()[1],
148 149 150
            x.non_zero_elements().dims()[0],
            static_cast<T>(1),
            x.non_zero_elements().data<T>(),
Z
zhangkaihuo 已提交
151
            out_grad.data<T>(),
152 153 154 155 156 157 158 159
            static_cast<T>(0),
            d_kernel_ptr + half_kernel_size * in_channels * out_channels);

  // call gemm: d_x = out_grad * transpose(kernel)
  // (n, out_channels) * (out_channels, in_channels)
  T* x_grad_ptr = x_grad->data<T>();
  blas.GEMM(CblasNoTrans,
            CblasTrans,
Z
zhangkaihuo 已提交
160
            out_grad.dims()[0],
161
            in_channels,
Z
zhangkaihuo 已提交
162
            out_grad.dims()[1],
163
            static_cast<T>(1),
Z
zhangkaihuo 已提交
164
            out_grad.data<T>(),
165 166 167 168 169
            kernel.data<T>() + half_kernel_size * in_channels * out_channels,
            static_cast<T>(0),
            x_grad_ptr);
}

Z
zhangkaihuo 已提交
170 171 172 173 174 175 176 177 178 179 180
inline const std::vector<int> PoolResetKernel(
    const std::vector<int>& kernel_sizes,
    const int in_channels,
    const int out_channels) {
  std::vector<int> res(kernel_sizes);
  res.resize(5);
  res[3] = in_channels;
  res[4] = out_channels;
  return res;
}

181 182 183
template <typename T>
inline void PrefixSum(const T* counter, T* offsets, const int n) {
  T offset = 0;
Z
zhangkaihuo 已提交
184 185 186 187 188 189 190
  for (int i = 0; i < n; i++) {
    offsets[i] = offset;
    offset += counter[i];
  }
  offsets[n] = offset;
}

191 192 193
}  // namespace sparse
}  // namespace funcs
}  // namespace phi