test_dist_fleet_ps12.py 6.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16

17 18
os.environ["WITH_DISTRIBUTE"] = "ON"

T
Thunderbrook 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import unittest

import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet

paddle.enable_static()

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSPassWithBow(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = fluid.layers.reduce_sum(cond)
45 46 47 48 49 50 51
            acc = fluid.layers.elementwise_div(
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'
                ),
                name="simnet_acc",
            )
T
Thunderbrook 已提交
52 53 54 55
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = fluid.layers.elementwise_sub(
56 57 58 59 60
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
                ),
                cos_q_pt,
            )
T
Thunderbrook 已提交
61 62
            loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
            loss_op3 = fluid.layers.elementwise_max(
63 64 65 66 67
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
                ),
                loss_op2,
            )
68
            avg_cost = paddle.mean(loss_op3)
T
Thunderbrook 已提交
69 70 71 72 73 74
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
75
        q = fluid.layers.data(name="1", shape=[1], dtype="int64", lod_level=1)
T
Thunderbrook 已提交
76 77 78 79 80 81 82
        # embedding
        q_emb = fluid.contrib.layers.sparse_embedding(
            input=q,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
83 84 85
                learning_rate=emb_lr,
            ),
        )
T
Thunderbrook 已提交
86 87 88 89 90 91 92 93 94 95 96
        q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = fluid.layers.softsign(q_sum)
        # fc layer after conv
        q_fc = fluid.layers.fc(
            input=q_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
97 98 99
                learning_rate=base_lr,
            ),
        )
T
Thunderbrook 已提交
100 101 102
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
103
        pt = fluid.layers.data(name="2", shape=[1], dtype="int64", lod_level=1)
T
Thunderbrook 已提交
104 105 106 107 108 109 110
        # embedding
        pt_emb = fluid.contrib.layers.sparse_embedding(
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
111 112 113
                learning_rate=emb_lr,
            ),
        )
T
Thunderbrook 已提交
114 115 116 117 118 119 120 121 122 123 124
        pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = fluid.layers.softsign(pt_sum)
        # fc layer
        pt_fc = fluid.layers.fc(
            input=pt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
125 126 127 128
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
T
Thunderbrook 已提交
129
        # nt
130
        nt = fluid.layers.data(name="3", shape=[1], dtype="int64", lod_level=1)
T
Thunderbrook 已提交
131 132 133 134 135 136 137
        # embedding
        nt_emb = fluid.contrib.layers.sparse_embedding(
            input=nt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
138 139 140
                learning_rate=emb_lr,
            ),
        )
T
Thunderbrook 已提交
141 142 143 144 145 146 147 148 149 150 151
        nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = fluid.layers.softsign(nt_sum)
        # fc layer
        nt_fc = fluid.layers.fc(
            input=nt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
152 153 154 155
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
T
Thunderbrook 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
        cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
        os.environ["PADDLE_PSERVER_NUMS"] = "2"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
172 173
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
T
Thunderbrook 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        os.environ["TRAINING_ROLE"] = "PSERVER"

        role = role_maker.PaddleCloudRoleMaker()
        fleet.init(role)
        loss, acc, _ = self.net()

        strategy = paddle.distributed.fleet.DistributedStrategy()
        configs = {"use_ps_gpu": 1}
        strategy.a_sync_configs = configs
        strategy.a_sync = True
        optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(loss)

        fleet.init_server()


if __name__ == '__main__':
    unittest.main()