test_floor_divide_op.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#!/usr/bin/env python3

# Copyright (c) 2022 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
import paddle
import paddle.nn.functional as F
import cinn
from cinn.frontend import *
from cinn.common import *


@OpTestTool.skip_if(not is_compiled_with_cuda(),
                    "x86 test will be skipped due to timeout.")
class TestFloorDivideOp(OpTest):
    def setUp(self):
        print(f"\nRunning {self.__class__.__name__}: {self.case}")
        self.init_case()

    def init_case(self):
        self.x_np = self.random(
            shape=self.case["x_shape"],
            dtype=self.case["x_dtype"],
            low=self.case["x_low"],
            high=self.case["x_high"])
        self.y_np = self.random(
            shape=self.case["y_shape"],
            dtype=self.case["y_dtype"],
            low=self.case["y_low"],
            high=self.case["y_high"])

    def build_paddle_program(self, target):
        x = paddle.to_tensor(self.x_np, stop_gradient=True)
        y = paddle.to_tensor(self.y_np, stop_gradient=True)

        out = paddle.floor_divide(x, y)

        self.paddle_outputs = [out]

    def build_cinn_program(self, target):
        builder = NetBuilder("pow")
        x = builder.create_input(
            self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
            "x")
        y = builder.create_input(
            self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"],
            "y")
        out = builder.floor_divide(x, y)

        prog = builder.build()
        res = self.get_cinn_output(prog, target, [x, y],
                                   [self.x_np, self.y_np], [out])

        self.cinn_outputs = res

    def test_check_results(self):
        max_relative_error = self.case[
            "max_relative_error"] if "max_relative_error" in self.case else 1e-5
        self.check_outputs_and_grads(max_relative_error=max_relative_error)


class TestFloorDivideShape(TestCaseHelper):
    def init_attrs(self):
        self.class_name = "TestFloorDivideOpCase"
        self.cls = TestFloorDivideOp
        self.inputs = [
            {
                "x_shape": [1],
                "y_shape": [1],
            },
            {
                "x_shape": [1024],
                "y_shape": [1024],
            },
            {
                "x_shape": [512, 256],
                "y_shape": [512, 256],
            },
            {
                "x_shape": [128, 64, 32],
                "y_shape": [128, 64, 32],
            },
            {
                "x_shape": [16, 8, 4, 2],
                "y_shape": [16, 8, 4, 2],
            },
            {
                "x_shape": [16, 8, 4, 2, 1],
                "y_shape": [16, 8, 4, 2, 1],
            },
        ]
        self.dtypes = [
            {
                "x_dtype": "int32",
                "y_dtype": "int32",
            },
        ]
        self.attrs = [
            {
                "x_low": -10,
                "x_high": 10,
                "y_low": -10,
                "y_high": -1,
            },
            {
                "x_low": -10,
                "x_high": 10,
                "y_low": 1,
                "y_high": 10,
            },
        ]


class TestFloorDivideBroadcast(TestFloorDivideShape):
    def init_attrs(self):
        super().init_attrs()
        self.inputs = [
            {
                "x_shape": [1],
                "y_shape": [1],
            },
            {
                "x_shape": [1024],
                "y_shape": [1],
            },
            {
                "x_shape": [512, 256],
                "y_shape": [1, 1],
            },
            {
                "x_shape": [128, 64, 32],
                "y_shape": [1, 1, 1],
            },
            {
                "x_shape": [16, 8, 4, 2],
                "y_shape": [1, 1, 1, 1],
            },
            {
                "x_shape": [16, 8, 4, 2, 1],
                "y_shape": [1, 1, 1, 1, 1],
            },
        ]


class TestFloorDivideDtype(TestFloorDivideShape):
    def init_attrs(self):
        super().init_attrs()
        self.inputs = [
            {
                "x_shape": [1024],
                "y_shape": [1024],
            },
        ]
        self.dtypes = [
            {
                "x_dtype": "int8",
                "y_dtype": "int8",
            },
            {
                "x_dtype": "int16",
                "y_dtype": "int16",
            },
            {
                "x_dtype": "int32",
                "y_dtype": "int32",
            },
            {
                "x_dtype": "int64",
                "y_dtype": "int64",
            },
            {
                "x_dtype": "float16",
                "y_dtype": "float16",
                "max_relative_error": 1,
            },
            {
                "x_dtype": "float32",
                "y_dtype": "float32",
            },
            {
                "x_dtype": "float64",
                "y_dtype": "float64",
            },
        ]


class TestFloorDivideUINT(TestCaseHelper):
    def init_attrs(self):
        self.class_name = "TestFloorDivideOpCase"
        self.cls = TestFloorDivideOp
        self.inputs = [
            {
                "x_shape": [1024],
                "y_shape": [1024],
            },
        ]
        self.dtypes = [
            {
                "x_dtype": "uint8",
                "y_dtype": "uint8",
            },
        ]
        self.attrs = [
            {
                "x_low": 1,
                "x_high": 10,
                "y_low": 1,
                "y_high": 10,
            },
        ]


if __name__ == "__main__":
    TestFloorDivideShape().run()
    TestFloorDivideBroadcast().run()
    TestFloorDivideDtype().run()
    TestFloorDivideUINT().run()