cross_kernel.cu 5.6 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/cross_kernel.h"

0
0x45f 已提交
17
#include "paddle/phi/backends/gpu/gpu_context.h"
Z
zhangbopd 已提交
18
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
19
#include "paddle/phi/common/amp_type_traits.h"
Z
zhangbopd 已提交
20
#include "paddle/phi/core/dense_tensor.h"
0
0x45f 已提交
21
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/kernels/funcs/index_calculator.h"
Z
zhangbopd 已提交
23 24 25 26 27 28 29 30 31

namespace phi {

template <typename T>
__global__ void Cross(const T* x,
                      const T* y,
                      T* out,
                      const int stride,
                      const int N,
32
                      phi::funcs::IndexCalculator index_calculator) {
Z
zhangbopd 已提交
33 34 35 36 37 38 39
  CUDA_KERNEL_LOOP(i, N) {
    int offset = index_calculator(i);

    auto pos0 = offset + 0 * stride;
    auto pos1 = offset + 1 * stride;
    auto pos2 = offset + 2 * stride;

40 41 42 43 44 45 46 47 48 49 50 51
    using MPType = typename phi::dtype::MPTypeTrait<T>::Type;

    MPType x_pos0_mp = static_cast<MPType>(x[pos0]);
    MPType x_pos1_mp = static_cast<MPType>(x[pos1]);
    MPType x_pos2_mp = static_cast<MPType>(x[pos2]);
    MPType y_pos0_mp = static_cast<MPType>(y[pos0]);
    MPType y_pos1_mp = static_cast<MPType>(y[pos1]);
    MPType y_pos2_mp = static_cast<MPType>(y[pos2]);

    out[pos0] = static_cast<T>(x_pos1_mp * y_pos2_mp - x_pos2_mp * y_pos1_mp);
    out[pos1] = static_cast<T>(x_pos2_mp * y_pos0_mp - x_pos0_mp * y_pos2_mp);
    out[pos2] = static_cast<T>(x_pos0_mp * y_pos1_mp - x_pos1_mp * y_pos0_mp);
Z
zhangbopd 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
}

template <typename T, typename Context>
void CrossKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 int axis,
                 DenseTensor* out) {
  auto& input_x = x;
  auto& input_y = y;
  auto* output = out;
  int dim = axis;

  auto input_x_dims = input_x.dims();
  if (dim != DDim::kMaxRank) {
    PADDLE_ENFORCE_EQ(
        dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
        true,
        phi::errors::OutOfRange(
            "Attr(dim) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
            input_x_dims.size(),
            input_x_dims.size() - 1,
            dim));
    if (dim < 0) {
      dim += input_x_dims.size();
    }

    PADDLE_ENFORCE_EQ(
        input_x_dims[dim] == 3,
        true,
        phi::errors::InvalidArgument(
            "Input(X/Y).dims[dim] must be equal to 3. But received: "
            "Input(X/Y).dims[dim] = [%d].",
            input_x_dims[dim]));
  } else {
    for (auto i = 0; i < input_x_dims.size(); i++) {
      if (input_x_dims[i] == 3) {
        dim = i;
        break;
      }
    }
    PADDLE_ENFORCE_EQ(dim == DDim::kMaxRank,
                      false,
                      phi::errors::InvalidArgument(
                          "There must be at least one dimension 'd' so that "
                          "Input(X/Y).dims()[d] is equal to 3. "
                          "But received: Input(X/Y).dims() == [%s].",
                          input_x_dims));
  }

  std::vector<int> cal_dims;
  std::vector<int> left_strides;
  std::vector<int> full_strides;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  std::vector<int> merged_dims;

  for (int i = 0; i < dim; i++) {
    if (i == 0) {
      merged_dims.push_back(input_x_dims[i]);
    } else {
      merged_dims[0] *= input_x_dims[i];
    }
  }
  int merge_axis = merged_dims.size();
  merged_dims.push_back(input_x_dims[dim]);
  for (int i = dim + 1; i < input_x_dims.size(); i++) {
    if (i == dim + 1) {
      merged_dims.push_back(input_x_dims[i]);
    } else {
      merged_dims[merge_axis + 1] *= input_x_dims[i];
    }
  }
Z
zhangbopd 已提交
125

126 127 128 129 130
  int full_dim = 1;
  for (int i = 0; i < merged_dims.size(); i++) {
    full_strides.insert(full_strides.begin(), full_dim);
    full_dim *= merged_dims[merged_dims.size() - i - 1];
    if (i == merge_axis) {
Z
zhangbopd 已提交
131 132 133
      continue;
    }
    cal_dims.push_back(i);
134 135 136 137 138 139 140 141
  }
  int left_dim = 1;
  for (int i = merged_dims.size() - 1; i >= 0; i--) {
    if (i == merge_axis) {
      continue;
    }
    left_strides.insert(left_strides.begin(), left_dim);
    left_dim *= merged_dims[i];
Z
zhangbopd 已提交
142 143 144 145 146
  }

  const auto* input_x_data = input_x.data<T>();
  const auto* input_y_data = input_y.data<T>();
  auto* out_data = dev_ctx.template Alloc<T>(out);
147 148
  auto index_calculator = phi::funcs::IndexCalculator(
      merged_dims.size() - 1, cal_dims, left_strides, full_strides);
Z
zhangbopd 已提交
149 150 151 152 153 154 155 156 157 158 159

  int64_t numel = x.numel();
  backends::gpu::GpuLaunchConfig config =
      backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel / 3);

  Cross<<<config.block_per_grid,
          config.thread_per_block,
          0,
          dev_ctx.stream()>>>(input_x_data,
                              input_y_data,
                              out_data,
160
                              full_strides[merge_axis],
Z
zhangbopd 已提交
161 162 163 164
                              numel / 3,
                              index_calculator);
}
}  // namespace phi
0
0x45f 已提交
165

166 167 168 169 170
PD_REGISTER_KERNEL(cross,
                   GPU,
                   ALL_LAYOUT,
                   phi::CrossKernel,
                   phi::dtype::float16,
171
                   phi::dtype::bfloat16,
172 173 174 175
                   float,
                   double,
                   int,
                   int64_t) {}