test_TrainerOnePass.cpp 9.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/PythonUtil.h>
#include <paddle/utils/GlobalConstants.h>
#include "paddle/trainer/Trainer.h"
#include "paddle/trainer/TrainerInternal.h"

#include <gtest/gtest.h>
#include <paddle/pserver/ParameterServer2.h>

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static const string& configFile1 = "trainer/tests/sample_trainer_config.conf";
static const string& configFile2 =
    "trainer/tests/sample_trainer_config_parallel.conf";

P_DECLARE_bool(use_gpu);
P_DECLARE_string(config);
P_DECLARE_int32(gpu_id);
P_DECLARE_int32(seed);
P_DECLARE_int32(num_passes);
P_DECLARE_int32(saving_period);

class TrainerForTest : public paddle::Trainer {
public:
  inline const std::shared_ptr<ParameterUpdater>& getParameterUpdaterForTest() {
    return this->trainerInternal_.getParameterUpdater();
  }
};

int gNumDevices = 0;

46 47 48 49 50
void trainerOnePassTest(const string& configFile,
                        bool useGpu,
                        bool parallel,
                        int trainerCount = 1,
                        double averageWindow = 0.0f,
Z
zhangjinchao01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                        bool doAverageInCpu = false) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  Trainer trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  if (averageWindow > 0) {
    config->getOptConfig().set_average_window(averageWindow);
    config->getOptConfig().set_do_average_in_cpu(doAverageInCpu);
  }
  trainer.init(config);
  trainer.train();
}

// 1. test trainer (cpu, gpu).
TEST(trainerOnePass, cpu) { trainerOnePassTest(configFile1, false, false); }

#ifndef PADDLE_ONLY_CPU
TEST(trainerOnePass, gpu) { trainerOnePassTest(configFile1, true, false); }

TEST(trainerOnePass, gpu2) { trainerOnePassTest(configFile1, true, false, 2); }

TEST(trainerOnePass, gpu4) { trainerOnePassTest(configFile1, true, false, 4); }

L
liaogang 已提交
86 87 88 89 90
TEST(trainerOnePass, parallel) {
  if (hl_get_device_count() >= 2) {
    trainerOnePassTest(configFile2, true, true);
  }
}
Z
zhangjinchao01 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#endif

// 2. test average_window.
#ifndef PADDLE_ONLY_CPU
TEST(average_window, gpu) {
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
}

TEST(average_window, gpu2) {
  FLAGS_num_passes = 100;
  trainerOnePassTest(configFile1, true, false, 2, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window, gpu4) {
  FLAGS_num_passes = 100;
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu2) {
  FLAGS_num_passes = 100;
  trainerOnePassTest(configFile1, true, false, 2, 0.01, true);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu4) {
  FLAGS_num_passes = 100;
  trainerOnePassTest(configFile1, true, false, 4, 0.01, true);
  FLAGS_num_passes = 1;
}
#endif

// 3. test trainer + pserver.
P_DECLARE_int32(num_gradient_servers);
P_DECLARE_int32(port);
P_DECLARE_bool(local);
P_DECLARE_bool(use_old_updater);

double checkRemoteParameterUpdater(TrainerForTest& trainer) {
  auto gradientMachine = trainer.getGradientMachine();
  auto parameterUpdater = trainer.getParameterUpdaterForTest();
  auto dataProvider = trainer.getDataProvider();
  auto& parameters = gradientMachine->getParameters();
  const TrainerConfig& config = trainer.getConfig();
  const string& alg = config.opt_config().algorithm();

  vector<ParameterPtr> parameterCheck;
  for (auto& parameter : parameters) {
    parameterCheck.emplace_back(
        new Parameter(parameter->getConfig(), /* useGpu= */ false));
    parameterCheck.back()
        ->getBuf(PARAMETER_VALUE)
        ->copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    parameterCheck.back()
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*parameter->getBuf(PARAMETER_GRADIENT));
  }

  std::unique_ptr<ParameterUpdater> parameterUpdaterCheck;
  if (alg == TrainAlgorithm::SGD) {
    parameterUpdaterCheck.reset(new SgdLocalUpdater(config.opt_config()));
  } else {
    LOG(INFO) << "unsupported algorithm in remote parameter check: " << alg;
    return -1.0;
  }
  parameterUpdaterCheck->init(parameterCheck);

  // gradientMachine->start(config, *dataProvider);
  DataBatch dataBatch;
  int32_t batchSize = config.opt_config().batch_size();
  dataProvider->getNextBatch(batchSize, &dataBatch);
  CHECK(dataBatch.getSize()) << "No data from data provider";
  int64_t actualBatchSize = dataBatch.getSize();
  const vector<Argument>& inArgs = dataBatch.getStreams();
  vector<Argument> outArgs;

168 169 170 171 172 173 174
  UpdateCallback updateCallback = [parameterUpdater,
                                   parameterCheck](Parameter* para) {
    parameterCheck[para->getID()]
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    parameterUpdater->update(para);
  };
Z
zhangjinchao01 已提交
175 176 177 178 179 180 181

  parameterUpdater->startPass();
  parameterUpdaterCheck->startPass();

  for (int i = 0; i < config.opt_config().num_batches_per_get_parameter() * 2;
       ++i) {
    PassType passType = parameterUpdater->startBatch(actualBatchSize);
182 183
    gradientMachine->forwardBackward(
        inArgs, &outArgs, passType, updateCallback);
Z
zhangjinchao01 已提交
184 185 186 187 188 189 190 191 192 193 194
    parameterUpdater->finishBatch(0);

    parameterUpdaterCheck->startBatch(actualBatchSize);
    for (auto& para : parameterCheck) {
      parameterUpdaterCheck->update(para.get());
    }
    parameterUpdaterCheck->finishBatch(0);
  }

  double sum = 0.0f;
  for (size_t i = 0; i != parameters.size(); ++i) {
195
    real *v1, *v2;
Z
zhangjinchao01 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    CpuVector trainerPara(parameters[i]->getSize());
    trainerPara.copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE));
    if (!FLAGS_use_gpu) {
      v1 = parameters[i]->getBuf(PARAMETER_VALUE)->getData();
    } else {
      v1 = trainerPara.getData();
    }
    v2 = parameterCheck[i]->getBuf(PARAMETER_VALUE)->getData();

    size_t size = parameters[i]->getSize();
    double diff = 0;
    for (size_t j = 0; j < size; ++j) {
      diff += fabs(v1[j] - v2[j]);
    }
    sum += diff;
    LOG(INFO) << setiosflags(ios::left) << setfill(' ') << setw(20)
              << parameters[i]->getName() << "diff=" << setw(15) << diff;
  }

  parameterUpdater->finishPass();
  parameterUpdaterCheck->finishPass();
  gradientMachine->finish();
  return sum;
}

221 222 223 224
void checkRemoteParameterUpdaterTest(const string& configFile,
                                     bool useGpu,
                                     bool parallel,
                                     int trainerCount = 1,
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
                                     bool useOldUpdater = false,
                                     int num_batches_per_get_parameter = 1) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  FLAGS_use_old_updater = useOldUpdater;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  FLAGS_local = 0;
  std::shared_ptr<ParameterServer2> pserver;
  pserver.reset(new ParameterServer2(std::string(), FLAGS_port));
  pserver->init();
  pserver->start();

  TrainerForTest trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  config->getOptConfig().set_num_batches_per_get_parameter(
      num_batches_per_get_parameter);
  trainer.init(config);
  EXPECT_EQ(checkRemoteParameterUpdater(trainer), 0);

  FLAGS_local = 1;
}

TEST(checkRemoteUpdater, cpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false);
}

TEST(checkRemoteUpdater, cpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true);
}

#ifndef PADDLE_ONLY_CPU
TEST(checkRemoteUpdater, gpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false);
}

TEST(checkRemoteUpdater, gpu2Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2);
}

TEST(checkRemoteUpdater, gpu4Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4);
}

TEST(checkRemoteUpdater, gpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 1, true);
}

TEST(checkRemoteUpdater, gpu2TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2, true);
}

TEST(checkRemoteUpdater, gpu4TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4, true);
}

#endif

TEST(checkRemoteUpdater, cpuDeltaTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, false, 10);
}

TEST(checkRemoteUpdater, cpuDeltaTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true, 10);
}

int main(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);
  gNumDevices = hl_get_device_count();
  testing::InitGoogleTest(&argc, argv);

  FLAGS_num_passes = 1;          // train one pass
  FLAGS_saving_period = 100000;  // do not save parameteres
  return RUN_ALL_TESTS();
}