test_mode_op.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def _mode1D(a):
    sorted_inds = np.argsort(a, kind='stable')
    sorted_array = a[sorted_inds]
    max_freq = 0
    cur_freq = 0
    mode = -1
    for i in range(len(sorted_array)):
        cur_freq += 1
        if i == len(sorted_array) - 1 or sorted_array[i] != sorted_array[i + 1]:
            if cur_freq > max_freq:
                mode = sorted_array[i]
                index = sorted_inds[i]
                max_freq = cur_freq
        cur_freq = 0
    return mode, index


def cal_mode(a, axis, keepdim=False):
    if axis < 0:
        axis = len(a.shape) + axis
    in_dims = list(range(a.ndim))
    a_view = np.transpose(a, in_dims[:axis] + in_dims[axis + 1:] + [axis])
    inds = np.ndindex(a_view.shape[:-1])
    modes = np.empty(a_view.shape[:-1], dtype=a.dtype)
    indexes = np.empty(a_view.shape[:-1], dtype=np.int64)
    for ind in inds:
        modes[ind], indexes[ind] = _mode1D(a_view[ind])
    if keepdim:
        newshape = list(a.shape)
        newshape[axis] = 1
        modes = modes.reshape(newshape)
        indexes = indexes.reshape(newshape)
    return modes, indexes


class TestModeOp(OpTest):
    def init_args(self):
        self.axis = 1

    def setUp(self):
        self.op_type = "mode"
        self.dtype = np.float64
        np.random.seed(666)
        self.input_data = np.random.rand(2, 64, 1)
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'axis': self.axis}
        output, indices = cal_mode(self.input_data, axis=self.axis)
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()

    def test_check_grad(self):
        paddle.enable_static()
        self.check_grad(set(['X']), 'Out')


class TestModeOpLastdim(OpTest):
    def init_args(self):
        self.axis = -1

    def setUp(self):
        self.op_type = "mode"
        self.dtype = np.float64
        np.random.seed(666)
        self.input_data = np.random.rand(2, 1, 1, 2, 30)
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'axis': self.axis}
        output, indices = cal_mode(self.input_data, axis=self.axis)
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()

    def test_check_grad(self):
        paddle.enable_static()
        self.check_grad(set(['X']), 'Out')


class TestModeOpKernels(unittest.TestCase):
    def setUp(self):
        self.axises = [-1, 1]
        np.random.seed(666)
        self.inputs = np.ceil(np.random.rand(2, 10, 10) * 1000)

    def test_mode_op(self):
        def test_cpu_kernel():
            paddle.set_device('cpu')
            tensor = paddle.to_tensor(self.inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_mode(self.inputs, axis)
                v, inds = paddle.mode(tensor, axis)
                self.assertTrue(np.allclose(v.numpy(), value_expect))

                value_expect, indice_expect = cal_mode(
                    self.inputs, axis, keepdim=True)
                v, inds = paddle.mode(tensor, axis, keepdim=True)
                self.assertTrue(np.allclose(v.numpy(), value_expect))

        def test_gpu_kernel():
            paddle.set_device('gpu')
            tensor = paddle.to_tensor(self.inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_mode(self.inputs, axis)
                v, inds = paddle.mode(tensor, axis)
                self.assertTrue(np.allclose(v.numpy(), value_expect))

                value_expect, indice_expect = cal_mode(
                    self.inputs, axis, keepdim=True)
                v, inds = paddle.mode(tensor, axis, keepdim=True)
                self.assertTrue(np.allclose(v.numpy(), value_expect))

        paddle.disable_static()
        test_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_gpu_kernel()


class TestModeOpErrors(unittest.TestCase):
    def setUp(self):
        self.x = paddle.uniform([2, 10, 20, 25], dtype='float32')

        def test_dim_range_error():
            self.x.mode(axis=5)

        self.assertRaises(ValueError, test_dim_range_error)


class TestModeOpInStatic(unittest.TestCase):
    def setUp(self):
        np.random.seed(666)
        self.input_data = np.ceil(
            np.random.random((2, 10, 10)) * 1000, dtype=np.float64)

    def test_run_static(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_tensor = paddle.static.data(
                name="x", shape=[2, 10, 10], dtype="float64")

            result = paddle.mode(input_tensor, axis=1)
            expect_value = cal_mode(self.input_data, axis=1)[0]
            exe = paddle.static.Executor(paddle.CPUPlace())
            paddle_result = exe.run(feed={"x": self.input_data},
                                    fetch_list=[result])[0]
            self.assertTrue(np.allclose(paddle_result, expect_value))


if __name__ == '__main__':
    unittest.main()