FeatureMapExpandLayer.cpp 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * @brief A layer for expanding a batch of images to feature maps.
 * Each data of the input is a 2 dimensional matrix. Each element of the matrix
 * is replicated num_filters times to create a feature map with num_filters
 * channels.
 * - Input: Input one should be dense image data.
 * - Output: expanded fature maps.
 * \f[
 *  y.row[i] = x.row[i \mod x.width], i = 0,1,..., (x.width * num\_filters - 1)
 * \f]
 * For example, num_filters = 4:
 * @code
 *   x = [a1,a2;
 *        b1,b2]
 *   y = [a1, a2, a1, a2, a1, a2, a1, a2;
 *        b1, b2, b1, b2, b1, b2, b1, b2;]
 * @endcode
 */

class FeatureMapExpandLayer : public Layer {
private:
  int numFilters_;

public:
  explicit FeatureMapExpandLayer(const LayerConfig& config) : Layer(config) {}

  ~FeatureMapExpandLayer() {}

Y
Yu Yang 已提交
49 50
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
51

Y
Yu Yang 已提交
52 53
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

REGISTER_LAYER(featmap_expand, FeatureMapExpandLayer);

bool FeatureMapExpandLayer::init(const LayerMap& layerMap,
                                 const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 1UL);
  numFilters_ = config_.num_filters();
  return true;
}

void FeatureMapExpandLayer::forward(PassType passType) {
  Layer::forward(passType);
  MatrixPtr inputV = getInputValue(0);
  size_t batchSize = getInput(0).getBatchSize();
  int imgSize = inputV->getWidth();
  resetOutput(batchSize, imgSize * numFilters_);

  MatrixPtr outputV = getOutputValue();

  {
    AsyncGpuBlock asyncGpuBlock;
    for (size_t i = 0; i < batchSize; i++) {
      MatrixPtr outVTmp =
          Matrix::create(outputV->getData() + i * imgSize * numFilters_,
82 83 84 85 86 87
                         numFilters_,
                         imgSize,
                         false,
                         useGpu_);
      MatrixPtr inVTmp = Matrix::create(
          inputV->getData() + i * imgSize, 1, imgSize, false, useGpu_);
Z
zhangjinchao01 已提交
88 89 90 91 92 93 94 95 96 97 98
      outVTmp->addRowVector(*inVTmp);
    }
  }
  /* activation */ {
    REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
    forwardActivation();
  }
}

void FeatureMapExpandLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inGrad = getInputGrad(0);
H
Haonan 已提交
99 100 101
  if (NULL == inGrad) {
    return;
  }
Z
zhangjinchao01 已提交
102 103 104 105 106 107 108 109
  MatrixPtr outGrad = getOutputGrad();
  size_t batchSize = getInput(0).getBatchSize();
  int imgSize = inGrad->getWidth();
  {
    AsyncGpuBlock asyncGpuBlock;
    for (size_t i = 0; i < batchSize; i++) {
      MatrixPtr outGradTmp =
          Matrix::create(outGrad->getData() + i * imgSize * numFilters_,
110 111 112 113 114 115
                         numFilters_,
                         imgSize,
                         false,
                         useGpu_);
      MatrixPtr inGradTmp = Matrix::create(
          inGrad->getData() + i * imgSize, 1, imgSize, false, useGpu_);
Z
zhangjinchao01 已提交
116 117 118 119 120 121 122 123 124 125
      inGradTmp->collectBias(*outGradTmp, 1);
    }
  }
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
    backwardActivation();
  }
}

}  // namespace paddle.