datamover_primitives_xpu2.h 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"

20
namespace phi {
21
namespace kps {
22 23
namespace details {

24 25
int RoundUpDiv(int n, int k) { return (n + k - 1) / k; }

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
enum class OptType {    // Optimize type of calc after input shape compressed
  CanNotOptimize = -1,  // can not optimize, broadcast first
  N_1,                  // just like {1} op {100} or {100} op {1}
  MN_N,                 // just like {100} op {3, 100} or {3, 100} op {100}
  MN_M,                 // just like {3} op {3, 100} or {3, 100} op {3}
  MNK_1N1,              // just like {3} op {2, 3, 100} or {2, 3, 100} op {3}
  MNK_M1K,  // just like {2, 1, 100} op {2, 3, 100} or {2, 3, 100} op {2, 1,
            // 100}
};

// Rules to determine whether dimensions can be merged
// rule 0 - xshape[idx] == yshape[idx]
// rule 1 - xshape[idx] == 1 && yshape[idx] != 1
// rule 2 - xshape[idx] != 1 && yshape[idx] == 1
static int judge_case(int a, int b) {
  if (a == b) {
    return 0;
  } else if (a == 1 && b != 1) {
    return 1;
  } else if (a != 1 && b == 1) {
    return 2;
  }
  return -1;
}

static bool case_is_same(int case_front, int case_back) {
  if (case_front == case_back) {
    return true;
  } else {
    return false;
  }
}

59 60 61 62 63 64 65 66 67 68
template <typename T, int VecSize>
struct alignas(sizeof(T) * VecSize) VectorType {
  T val[VecSize];
};

/**
 * Configuration of broadcast. Calculate the input data index according to the
 * index of the output data. if input or output shape is [dim0, dim1] then dims
 * must be [dim1, dim0].
 */
69
#pragma pack(4)
70
struct BroadcastConfig {
71 72 73
  int strides_in[phi::DDim::kMaxRank];
  int strides_out[phi::DDim::kMaxRank];
  int in_dim[phi::DDim::kMaxRank];
74
  int dim_after_cmp[phi::DDim::kMaxRank];
75
  int y_dim_after_cmp[phi::DDim::kMaxRank];
76 77 78 79 80 81 82
  int dim_size_after_cmp = 0;
  int cmp_res = 0;
  OptType cmp_type = OptType::CanNotOptimize;
  int m = 1;
  int n = 1;
  int k = 1;
  int buf_len = 0;
83
  int kDims;
84 85 86 87
  HOSTDEVICE BroadcastConfig() {}

  HOSTDEVICE BroadcastConfig(const std::vector<int64_t>& out_dims,
                             const std::vector<int64_t>& in_dims,
88
                             const std::vector<int64_t>& y_in_dims,
89
                             int dim_size) {
90 91 92 93 94 95 96 97 98
    std::vector<int> strides_in_tmp;
    std::vector<int> strides_out_tmp;
    std::vector<int> dim_tmp;
    strides_in_tmp.resize(dim_size, 1);
    strides_out_tmp.resize(dim_size, 1);
    dim_tmp.resize(dim_size, 1);
    for (int i = 1; i < dim_size; i++) {
      strides_in_tmp[i] = strides_in_tmp[i - 1] * in_dims[i - 1];
      strides_out_tmp[i] = strides_out_tmp[i - 1] * out_dims[i - 1];
99 100
    }

101 102
    for (int i = 0; i < dim_size; i++) {
      dim_tmp[i] = in_dims[i];
103
    }
104
    kDims = dim_size;
105 106 107
    memcpy(strides_in, strides_in_tmp.data(), kDims * sizeof(int));
    memcpy(strides_out, strides_out_tmp.data(), kDims * sizeof(int));
    memcpy(in_dim, dim_tmp.data(), kDims * sizeof(int));
108

109 110
    cmp_res = get_mnk_for_broadcast_ops(in_dims, y_in_dims);
    get_opt_type();
111 112 113 114 115 116 117 118 119 120 121 122 123
    buf_len = get_buf_len();
  }

  int get_buf_len() {
    if (cmp_type == OptType::CanNotOptimize) {
      return 256;
    }
    int max_buf_len = 512;
    int buf_len = m / 16 * 16;
    if (buf_len == 0) {
      buf_len = m;
    }
    return std::min(max_buf_len, buf_len);
124 125 126 127
  }

  __device__ inline int operator()(int index_output) const {
    int index_src = 0;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    switch (cmp_type) {
      int div, mod, tmp_index;
      case OptType::MNK_M1K:
        div = index_output / (m * n);
        mod = index_output % (m * n) % m;
        index_src = div * m + mod;
        break;
      case OptType::MNK_1N1:
        // index_src = index_output / m % n;
        index_src = index_output % (m * n) / m;
        break;
      case OptType::N_1:
        index_src = 0;
        break;
      case OptType::MN_N:
        index_src = index_output / m;
        break;
      case OptType::MN_M:
        index_src = index_output % m;
        break;
      case OptType::CanNotOptimize:
        for (int i = kDims - 1; i >= 0; --i) {
          tmp_index = (index_output / strides_out[i]);
          index_output = index_output - tmp_index * strides_out[i];
          index_src += (tmp_index % in_dim[i]) * strides_in[i];
        }
        break;
156 157
    }
    return index_src;
158
  }
159

160
  void get_opt_type() {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    if (dim_size_after_cmp == 1) {
      if (dim_after_cmp[0] == 1 && y_dim_after_cmp[0] != 1) {  // {1} op {n}
        n = y_dim_after_cmp[0];
        cmp_type = OptType::N_1;
      } else if (dim_after_cmp[0] != 1 &&
                 y_dim_after_cmp[0] == 1) {  // {n} op {1}
        n = dim_after_cmp[0];
        cmp_type = OptType::N_1;
      } else {
        cmp_type = OptType::CanNotOptimize;  // xshape == yshape
      }
    }
    if (dim_size_after_cmp == 2) {
      if (dim_after_cmp[0] == 1 && dim_after_cmp[1] != 1 &&
          y_dim_after_cmp[0] != 1 &&
          y_dim_after_cmp[1] != 1) {  // {n} op {m, n}
        m = y_dim_after_cmp[0];
        n = y_dim_after_cmp[1];
        cmp_type = OptType::MN_N;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] == 1 &&
                 y_dim_after_cmp[0] != 1 &&
                 y_dim_after_cmp[1] != 1) {  // {m} op {m, n}
        m = y_dim_after_cmp[0];
        n = y_dim_after_cmp[1];
        cmp_type = OptType::MN_M;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] != 1 &&
                 y_dim_after_cmp[0] == 1 &&
                 y_dim_after_cmp[1] != 1) {  // {m, n} op {n}
        m = dim_after_cmp[0];
        n = dim_after_cmp[1];
        cmp_type = OptType::MN_N;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] != 1 &&
                 y_dim_after_cmp[0] != 1 &&
                 y_dim_after_cmp[1] == 1) {  // {m, n} op {m}
        m = dim_after_cmp[0];
        n = dim_after_cmp[1];
        cmp_type = OptType::MN_M;
      } else {
        cmp_type = OptType::CanNotOptimize;
      }
    }
    if (dim_size_after_cmp == 3) {
      if (dim_after_cmp[0] == 1 && dim_after_cmp[1] != 1 &&
          dim_after_cmp[2] == 1 && y_dim_after_cmp[0] != 1 &&
          y_dim_after_cmp[1] != 1 &&
          y_dim_after_cmp[2] != 1) {  // {1, n, 1} op {m, n, k}
        m = y_dim_after_cmp[0];
        n = y_dim_after_cmp[1];
        k = y_dim_after_cmp[2];
        cmp_type = OptType::MNK_1N1;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] != 1 &&
                 dim_after_cmp[2] != 1 && y_dim_after_cmp[0] == 1 &&
                 y_dim_after_cmp[1] != 1 &&
                 y_dim_after_cmp[2] == 1) {  // {m, n, k} op {1, n, 1}
        m = dim_after_cmp[0];
        n = dim_after_cmp[1];
        k = dim_after_cmp[2];
        cmp_type = OptType::MNK_1N1;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] == 1 &&
                 dim_after_cmp[2] != 1 && y_dim_after_cmp[0] != 1 &&
                 y_dim_after_cmp[1] != 1 &&
                 y_dim_after_cmp[2] != 1) {  // {m, 1, k} op {m, n, k}
        m = y_dim_after_cmp[0];
        n = y_dim_after_cmp[1];
        k = y_dim_after_cmp[2];
        cmp_type = OptType::MNK_M1K;
      } else if (dim_after_cmp[0] != 1 && dim_after_cmp[1] != 1 &&
                 dim_after_cmp[2] != 1 && y_dim_after_cmp[0] != 1 &&
                 y_dim_after_cmp[1] == 1 &&
                 y_dim_after_cmp[2] != 1) {  // {m, n, k} op {m, 1, k}
        m = dim_after_cmp[0];
        n = dim_after_cmp[1];
        k = dim_after_cmp[2];
        cmp_type = OptType::MNK_M1K;
      } else {
        cmp_type = OptType::CanNotOptimize;
      }
    }
  }

  int get_mnk_for_broadcast_ops(const std::vector<int64_t>& xshape,
                                const std::vector<int64_t>& yshape) {
    int idx = 0;
    int cmp_x = 0;
    int cmp_y = 0;
    bool is_same = false;
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    std::vector<int64_t> xshape_after_remove_ones = xshape;
    std::vector<int64_t> yshape_after_remove_ones = yshape;
    // first step: remove excess ones
    std::vector<int64_t>::iterator x_iter = xshape_after_remove_ones.begin();
    std::vector<int64_t>::iterator y_iter = yshape_after_remove_ones.begin();
    for (; x_iter != xshape_after_remove_ones.end();) {
      if (*x_iter == 1 && *y_iter == 1) {
        x_iter = xshape_after_remove_ones.erase(x_iter);
        y_iter = yshape_after_remove_ones.erase(y_iter);
      } else {
        x_iter++;
        y_iter++;
      }
    }
    // second step: compress dims
    int after_cmp_idx = 0;
    for (int i = 0; i < 3; i++) {
      cmp_x = xshape_after_remove_ones[idx];
      cmp_y = yshape_after_remove_ones[idx];
      while ((idx + 1) < xshape_after_remove_ones.size()) {
        is_same = case_is_same(judge_case(xshape_after_remove_ones[idx],
                                          yshape_after_remove_ones[idx]),
                               judge_case(xshape_after_remove_ones[idx + 1],
                                          yshape_after_remove_ones[idx + 1]));
        if (is_same) {
          cmp_x = cmp_x * xshape_after_remove_ones[idx + 1];
          cmp_y = cmp_y * yshape_after_remove_ones[idx + 1];
          idx++;
        } else {
          break;
        }
      }
      idx = idx + 1;
      dim_after_cmp[after_cmp_idx] = cmp_x;
282
      y_dim_after_cmp[after_cmp_idx] = cmp_y;
283 284 285 286 287 288 289 290
      after_cmp_idx++;
      if (idx == xshape_after_remove_ones.size()) {
        dim_size_after_cmp = after_cmp_idx;
        return 0;
      }
    }
    return -1;  // can not compress dims
  }
291
};
292
#pragma pack()
293

294
template <typename T>
295
__device__ __forceinline__ void WriteData(T _global_ptr_* dst,
296 297 298 299 300 301 302 303
                                          T* src,
                                          int num) {
  if (num > 0) {
    LM2GM(src, dst, num * sizeof(T));
  }
}
#undef INT_BITS

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}  // namespace details

/**
 * @brief Read 2D data from global memory to register according to Tx type, and
 * store it as Ty type into register.
 *
 * @template paraments
 * Tx: The type of data stored in the global memory.
 * Ty: The type of data that needs to be stored in registers.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
332 333 334 335 336
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
337
          bool IsBoundary = false>
338 339 340 341 342
__device__ __inline__ void ReadData(Ty* dst,
                                    const Tx _global_ptr_* src,
                                    int size_nx,
                                    int size_ny,
                                    int stride_nx,
343
                                    int stride_ny) {
344 345
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
346
  __local__ Tx in_temp[1];
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
      if (left_size_nx > 0) {
        GM2LM(src + thread_offset, in_temp, sizeof(Tx));
        dst[0] = static_cast<Ty>(in_temp[0]);
      }
    } else {
      GM2LM(src + thread_offset, in_temp, sizeof(Tx));
      dst[0] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }
      GM2LM(src + thread_offset + idy * stride_ny, in_temp, sizeof(Tx));
      dst[idy] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
      GM2LM(src + thread_offset + idx * stride_nx, in_temp, sizeof(Tx));
      dst[idx] = static_cast<Ty>(in_temp[0]);
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny || idx * stride_nx >= left_size_nx) {
            break;
          }
        }
        int fix = thread_offset + idx * stride_nx + idy * stride_ny;
        GM2LM(src + fix, in_temp, sizeof(Tx));
        dst[idy * NX + idx] = static_cast<Ty>(in_temp[0]);
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: Initial value.
 */
template <typename T, int NX>
410
__device__ __inline__ void Init(T* dst, T init_data) {
411 412 413 414 415 416
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

417 418 419 420 421 422 423 424
template <typename T, int NX>
__device__ __inline__ void Init(T* dst, T init_data, int read_lens) {
#pragma unroll
  for (int i = 0; i < read_lens; i++) {
    dst[i] = init_data;
  }
}

425 426 427 428 429
/**
 * The difference from the above function is that
 * it supports different data types of inputs.
 */
template <typename T, typename ArgsT, int Index, int NX>
430 431
__device__ __forceinline__ void Init(ArgsT* dst, T init_data, int read_lens) {
  mfence();
432
#pragma unroll
433
  for (int i = 0; i < read_lens; i++) {
434 435 436 437
    std::get<Index>(dst[i]) = init_data;
  }
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/**
 * @brief Read 1D data from global memory to register. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
 * improve memory access efficiency.
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
 */
459
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
460 461
__device__ __inline__ void ReadData(T* dst,
                                    const T _global_ptr_* src,
462
                                    int num) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        dst[idx] = in_temp[0];
      }
    }
  } else {  // core_num() * NX < num
    GM2LM(src + thread_offset, dst, NX * sizeof(T));
  }
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
__device__ __inline__ void ReadData(T* dst,
                                    const T _global_ptr_* src,
                                    int num,
                                    int read_lens) {
  int thread_offset = core_id() * read_lens;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * read_lens > num
#pragma unroll
    for (int idx = 0; idx < read_lens; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        dst[idx] = in_temp[0];
      }
    }
  } else {  // core_num() * read_lens < num
    GM2LM(src + thread_offset, dst, read_lens * sizeof(T));
  }
}

498 499 500
/**
 * @brief Read 1D data from global memory to register. The difference
 * from the above function is that it supports different data types of inputs.
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * ArgsT: The Type if dst, ArgsT can be std::tuple<T> or std::tuple<Args>
 * Index: The index of data stored in dst.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
519 520 521 522 523 524 525
 */
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          typename ArgsT,
          int Index,
526
          bool IsBoundary>
527
__device__ __forceinline__ void ReadData(ArgsT* dst,
528
                                         const T _global_ptr_* src,
529 530 531
                                         int num,
                                         int read_lens) {
  int thread_offset = core_id() * read_lens;
532 533
  __local__ T in_temp[1];
  __local__ T in_vec[NX];
534
  if (IsBoundary) {  // core_num() * read_lens > num
535
#pragma unroll
536
    for (int idx = 0; idx < read_lens; ++idx) {
537 538 539
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        std::get<Index>(dst[idx]) = in_temp[0];
540
        mfence();
541 542
      }
    }
543 544
  } else {  // core_num() * read_lens < num
    GM2LM(src + thread_offset, in_vec, read_lens * sizeof(T));
545
#pragma unroll
546
    for (int idx = 0; idx < read_lens; ++idx) {
547 548 549 550 551
      std::get<Index>(dst[idx]) = in_vec[idx];
    }
  }
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/**
 * @brief Read 2D data from global memory to registers with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: Raw input data pointer of kernel.
 * block_offset: Data offset of this block, core_num() *  cluster_id() * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
576
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
577 578
__device__ __inline__ void ReadDataBc(T* dst,
                                      const T _global_ptr_* src,
579
                                      uint32_t block_offset,
580
                                      const details::BroadcastConfig& config,
581 582
                                      int total_num_output,
                                      int stride_nx,
583
                                      int stride_ny) {
584 585 586 587 588 589 590 591 592 593 594
  uint32_t thread_offset = block_offset + core_id();
  uint32_t index_src = 0;
  __local__ T in_temp[1];

#pragma unroll
  for (int ny = 0; ny < NY; ++ny) {
#pragma unroll
    for (uint32_t nx = 0; nx < NX; ++nx) {
      uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx;
      index_src = 0;
      if (IsBoundary) {
595
        if (index_output >= (uint32_t)total_num_output) {
596 597 598
          break;
        }
      }
599
      index_src = config(index_output);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
      GM2LM(src + index_src, in_temp, sizeof(T));
      dst[nx + ny * NX] = in_temp[0];
    }
  }
}

/**
 * @brief Read 2D data from global memory to register with reduce form.
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The input data pointer of this block.
 * block_offset: The data offset of this block, blockDim.x * cluster_id() * NX.
 * index_cal: Calculation configuration of Reduce. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will participate in the calculation when isboundary = true.
 * size_ny: The current block needs to load size_ny rows of data, this parameter
 * will participate in the calculation when isboundary = true.
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx columns.
 * stride_ny: Each read one element stride stride_ny raws.
 * reduce_last_dim: Used to indicate whether the dimension of reduce contains
 * the lowest dimension.
 */
637 638
template <typename Tx,
          typename Ty,
639 640 641 642 643
          int NX,
          int NY,
          int BlockSize,
          int Rank,
          typename IndexCal,
644
          typename Functor,
645
          bool IsBoundary = false>
646 647 648 649 650 651 652 653 654 655 656
__device__ __forceinline__ void ReadDataReduce(
    Ty* dst,
    const Tx _global_ptr_* __restrict__ src,
    int block_offset,
    const IndexCal& index_cal,
    int size_nx,
    int size_ny,
    int stride_nx,
    int stride_ny,
    Functor func,
    bool reduce_last_dim) {
657
  __local__ Tx in_temp[1];
658
  int thread_offset = 0;
659
  int left_idx = 0;
660
  if (reduce_last_dim) {
661 662
    thread_offset = core_id();
    left_idx = 0;
663
  } else {
664 665
    thread_offset = 0;
    left_idx = 0;
666 667 668 669 670 671
  }

  if (NX == 1) {
#pragma unroll
    for (int ny = 0; ny < NY; ++ny) {
      if (IsBoundary) {
672
        if (thread_offset >= size_ny) {
673 674 675
          break;
        }
      }
676 677 678
      uint32_t index_src = index_cal(thread_offset + block_offset);
      GM2LM(src + index_src, in_temp, sizeof(Tx));
      dst[ny] = static_cast<Ty>(func(in_temp[0]));
679 680 681 682 683 684 685 686
      thread_offset += stride_ny;
    }
  } else {
#pragma unroll
    for (int nx = 0; nx < NX; ++nx) {
#pragma unroll
      for (int ny = 0; ny < NY; ++ny) {
        if (IsBoundary) {
687 688
          if ((thread_offset >= size_ny) ||
              (left_idx + nx * stride_nx >= size_nx)) {
689 690 691
            break;
          }
        }
692 693 694
        uint32_t index_src = index_cal(thread_offset + block_offset);
        GM2LM(src + index_src, in_temp, sizeof(Tx));
        dst[nx + ny * NX] = static_cast<Ty>(func(in_temp[0]));
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        thread_offset += stride_ny;
      }
    }
  }
}
/**
 * @brief Write 1D data from registers to global memory. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
 * data loading efficiency
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data continuously writed by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The data pointer of the current block.
 * src: The register pointer, the size is NX * NY.
 * size: The current block needs to load size elements continuously.
 */

722 723 724 725 726 727 728 729 730 731 732 733 734
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
__device__ void WriteData(T _global_ptr_* dst,
                          const T* src,
                          int num,
                          int read_lens) {
  int thread_offset = core_id() * read_lens;
  __local__ T in_temp[1];

  if (IsBoundary) {  // core_num() * read_lens > num
#pragma unroll
    for (int idx = 0; idx < read_lens; ++idx) {
      if (idx + thread_offset < num) {
        in_temp[0] = src[idx];
735
        mfence();
736 737 738 739
        LM2GM(in_temp, dst + idx + thread_offset, sizeof(T));
      }
    }
  } else {  // core_num() * read_lens < num
740
    mfence();
741 742 743 744
    LM2GM(src, dst + thread_offset, read_lens * sizeof(T));
  }
}

745 746 747 748
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
__device__ void WriteData(T _global_ptr_* dst, const T* src, int num) {
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
749

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        in_temp[0] = src[idx];
        LM2GM(in_temp, dst + idx + thread_offset, sizeof(T));
      }
    }
  } else {  // core_num() * NX < num
    LM2GM(src, dst + thread_offset, NX * sizeof(T));
  }
}

/**
 * @brief Write 2D data from register to global memory according to Tx type, and
 * store it as Ty type.
 *
 * @template paraments
 * Tx: The type of data that needs to be stored in registers.
 * Ty: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: Data pointer of the current block.
 * src: The register pointer of the thread, the size is NX * NY.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will be used when IsBoundary = true.
 * size_ny: The current block needs to load size_ny rows of data. This parameter
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
789 790 791 792 793
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
794
          bool IsBoundary = false>
795 796 797 798 799
__device__ __inline__ void WriteData(Ty _global_ptr_* dst,
                                     const Tx* src,
                                     int size_nx,
                                     int size_ny,
                                     int stride_nx,
800
                                     int stride_ny) {
801 802 803 804 805 806 807 808 809
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
  __local__ Ty in_temp[1];

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {
    if (IsBoundary) {
      if (left_size_nx > 0) {
        in_temp[0] = static_cast<Ty>(src[0]);
810
        LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
811 812 813
      }
    } else {
      in_temp[0] = static_cast<Ty>(src[0]);
814
      LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
815 816 817 818 819 820 821 822 823 824 825
    }
  } else if (NX == 1) {
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idy]);
826
      LM2GM(in_temp, dst + thread_offset + idy * stride_ny, sizeof(Ty));
827 828 829 830 831 832 833 834 835 836 837
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idx]);
838
      LM2GM(in_temp, dst + thread_offset + idx * stride_nx, sizeof(Ty));
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny) {
            break;
          }
        }
        in_temp[0] = static_cast<Ty>(src[idx + idy * NX]);
856 857
        LM2GM(in_temp,
              dst + thread_offset + idx * stride_nx + idy * stride_ny,
858
              sizeof(Ty));
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, bool IsBoundary = false>
876
__device__ __inline__ void Init(T* dst, T* init_data, int num) {
877 878 879 880 881 882 883 884 885 886 887
#pragma unroll
  for (int i = 0; i < NX; i++) {
    if (IsBoundary) {
      if (i >= num) {
        break;
      }
    }
    dst[i] = init_data[i];
  }
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/**
 * @brief Read data from global memory to local memory with broadcast
 * {m, 1, k}-> {m, n, k} form.
 *
 * @template paraments
 * T: Data type of register.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 */
904
template <typename T>
905 906 907 908
__device__ __inline__ void ReadDataBcM1kMnk(
    T* dst,
    const T _global_ptr_* src,
    int thread_offset,
909
    const details::BroadcastConfig& config,
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    int read_lens) {
  int index_output = thread_offset;
  int index_base = config(index_output);
  int m = config.m;
  int n = config.n;

  int m_pos = index_base % m;
  if ((m - m_pos) < read_lens) {
    int last_col = m - m_pos;
    GM2LM(src + index_base, dst, last_col * sizeof(T));
    int n_pos = index_output % (m * n) / m;
    int next_part_index = 0;
    if (n_pos != config.n - 1) {
      next_part_index = index_base / m * m;
    } else {
      next_part_index = (index_base / m + 1) * m;
    }
    GM2LM(src + next_part_index,
          dst + last_col,
          (read_lens - last_col) * sizeof(T));
  } else {
    GM2LM(src + index_base, dst, read_lens * sizeof(T));
  }
}

/**
 * @brief Read data from global memory to local memory with broadcast
 * {m, 1}-> {m, n} form.
 *
 * @template paraments
 * T: Data type of register.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 */
951
template <typename T>
952 953 954 955
__device__ __inline__ void ReadDataBcM1Mn(
    T* dst,
    const T _global_ptr_* src,
    int thread_offset,
956
    const details::BroadcastConfig& config,
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    int read_lens) {
  int index_output = thread_offset;
  int index_base = config(index_output);
  int m = config.m;
  int n = config.n;

  int m_pos = index_base % m;
  if ((m - m_pos) < read_lens) {
    int last_col = m - m_pos;
    GM2LM(src + index_base, dst, last_col * sizeof(T));
    GM2LM(src, dst + last_col, (read_lens - last_col) * sizeof(T));
  } else {
    GM2LM(src + index_base, dst, read_lens * sizeof(T));
  }
}

/**
 * @brief Read data from global memory to local memory with broadcast
 * {1, n}-> {m, n} form.
 *
 * @template paraments
 * T: Data type of register.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 */
988
template <typename T>
989 990 991 992
__device__ __inline__ void ReadDataBc1NMn(
    T* dst,
    const T _global_ptr_* src,
    int thread_offset,
993
    const details::BroadcastConfig& config,
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    int read_lens) {
  int index_output = thread_offset;
  int index_base = config(index_output);
  int m = config.m;
  int n = config.n;
  T in_temp;

  int m_pos = index_output % m;
  if ((m - m_pos) < read_lens) {
    int last_col = m - m_pos;
    GM2LM(src + index_base, &in_temp, sizeof(T));
    for (int i = 0; i < last_col; i++) {
      dst[i] = in_temp;
    }
    GM2LM(src + index_base + 1, &in_temp, sizeof(T));
    for (int i = 0; i < read_lens - last_col; i++) {
      dst[last_col + i] = in_temp;
    }
  } else {
    GM2LM(src + index_base, &in_temp, sizeof(T));
    for (int i = 0; i < read_lens; i++) {
      dst[i] = in_temp;
    }
  }
}

/**
 * @brief Read data from global memory to local memory with broadcast
 * {1, n, 1}-> {m, n, k} form.
 *
 * @template paraments
 * T: Data type of register.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 */
1035
template <typename T>
1036 1037 1038 1039
__device__ __inline__ void ReadDataBc1N1Mnk(
    T* dst,
    const T _global_ptr_* src,
    int thread_offset,
1040
    const details::BroadcastConfig& config,
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    int read_lens) {
  int index_output = thread_offset;
  int index_base = config(index_output);
  int m = config.m;
  int n = config.n;
  T in_temp;

  int m_pos = index_output % m;
  if ((m - m_pos) < read_lens) {
    int last_col = m - m_pos;
    GM2LM(src + index_base, &in_temp, sizeof(T));
    for (int i = 0; i < last_col; i++) {
      dst[i] = in_temp;
    }
    int n_pos = index_output % (m * n) / m;
    int next_part_index = 0;
    if (n_pos != n - 1) {
      next_part_index = n_pos + 1;
    } else {
      next_part_index = 0;
    }
    GM2LM(src + next_part_index, &in_temp, sizeof(T));
    for (int i = 0; i < read_lens - last_col; i++) {
      dst[last_col + i] = in_temp;
    }
  } else {
    GM2LM(src + index_base, &in_temp, sizeof(T));
    for (int i = 0; i < read_lens; i++) {
      dst[i] = in_temp;
    }
  }
}

/**
 * @brief Read data from global memory to local memory with broadcast
 * {1}-> {n} form.
 *
 * @template paraments
 * T: Data type of register.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 */
1089 1090 1091 1092 1093 1094
template <typename T>
__device__ __inline__ void ReadDataBc1N(T* dst,
                                        const T _global_ptr_* src,
                                        int thread_offset,
                                        const details::BroadcastConfig& config,
                                        int read_lens) {
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  int index_output = thread_offset;
  int index_base = config(index_output);
  T in_temp;

  GM2LM(src + index_base, &in_temp, sizeof(T));
  for (int i = 0; i < read_lens; i++) {
    dst[i] = in_temp;
  }
}

/**
 * @brief Read data from global memory to local memory with broadcast
 * form which can not compress.
 *
 * @template paraments
 * T: Data type of register.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * src: The original input data pointer of kernel.
 * thread_offset: The data offset of this thread.
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 * read_lens: The number of data continuously loaded by each thread.
 */
1122
template <typename T, bool IsBoundary = false>
1123 1124 1125 1126
__device__ __inline__ void ReadDataBcCanNotCmp(
    T* dst,
    const T _global_ptr_* src,
    int thread_offset,
1127
    const details::BroadcastConfig& config,
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    int total_num_output,
    int read_lens) {
  int index_output = thread_offset;
  int index_base = config(index_output);
  T in_temp;
  int cache_size = 256;
  __local__ T src_temp[cache_size];
  GM2LM(src + index_base, src_temp, cache_size * sizeof(T));

  for (int nx = 0; nx < read_lens; ++nx) {
    index_output = thread_offset + nx;
    if (IsBoundary) {
      if (index_output >= total_num_output) {
        break;
      }
    }
    int index_src = config(index_output);
    if (index_src >= index_base && index_src < index_base + cache_size) {
      in_temp = src_temp[index_src - index_base];
    } else {
      GM2LM(src + index_src, &in_temp, sizeof(T));
    }
    dst[nx] = in_temp;
  }
}

/**
 * @brief Read 1D data from global memory to register with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The original input data pointer of kernel.
 * block_offset: The data offset of this block, core_num() * blockIdx.x * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * read_lens: The number of data continuously loaded by each thread.
 * total_num_output: Total number of original output.
 */
1177 1178 1179 1180 1181 1182 1183
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
__device__ __inline__ void ReadDataBc(T* dst,
                                      const T _global_ptr_* src,
                                      uint32_t block_offset,
                                      const details::BroadcastConfig& config,
                                      int total_num_output,
                                      int read_lens) {
1184 1185 1186
  int thread_offset = block_offset + core_id() * read_lens;

  if (config.cmp_type == details::OptType::MNK_M1K) {
1187
    ReadDataBcM1kMnk<T>(dst, src, thread_offset, config, read_lens);
1188
  } else if (config.cmp_type == details::OptType::N_1) {
1189
    ReadDataBc1N<T>(dst, src, thread_offset, config, read_lens);
1190
  } else if (config.cmp_type == details::OptType::MN_M) {
1191
    ReadDataBcM1Mn<T>(dst, src, thread_offset, config, read_lens);
1192
  } else if (config.cmp_type == details::OptType::MN_N) {
1193
    ReadDataBc1NMn<T>(dst, src, thread_offset, config, read_lens);
1194
  } else if (config.cmp_type == details::OptType::MNK_1N1) {
1195
    ReadDataBc1N1Mnk<T>(dst, src, thread_offset, config, read_lens);
1196
  } else {
1197
    ReadDataBcCanNotCmp<T, IsBoundary>(
1198 1199 1200 1201
        dst, src, thread_offset, config, total_num_output, read_lens);
  }
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * @brief Initialize register with data index.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 * NY: Number of data to initialize, NY only can be 1.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, int NY, int BlockSize>
__device__ __forceinline__ void InitWithDataIndex(T* dst, int block_offset) {
  int thread_offset = block_offset + core_id() * NX;
#pragma unroll
  for (int nx = 0; nx < NX; ++nx) {
    dst[nx] = static_cast<T>(thread_offset + nx);
  }
}

1225
}  // namespace kps
1226
}  // namespace phi