compiler.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
S
sneaxiy 已提交
20
from .framework import cuda_places, cpu_places
21 22 23

from . import core

X
Xin Pan 已提交
24 25
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

26 27
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
28 29
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
30 31 32 33 34 35 36 37


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
38
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
39 40 41
    """
    Compiles a Program for execution.

X
Xin Pan 已提交
42 43 44 45
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
46 47 48 49 50 51 52 53
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
      * TODO: transform the program for optimized inference or distributed
              training.

    Example:
X
Xin Pan 已提交
54 55 56 57 58 59 60 61 62 63
        .. code-block:: python
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name)
            for i in range(5):
                test_loss, = exe.run(compiled_prog,
                                     feed=feed_dict,
                                     fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
64 65 66 67 68

    Args:
        program: Program instance that contains the model logic.
    """

69 70
    def __init__(self, program):
        self._program = program
X
polish  
Xin Pan 已提交
71 72 73
        self._scope = None
        self._place = None
        self._executor = None
74 75
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
76
        self._is_inference = False
77

X
Xin Pan 已提交
78 79 80 81
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
82 83
                           share_vars_from=None,
                           places=None):
X
Xin Pan 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        """Configs the program to run in data parallel way.

        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
            share_vars_from(CompiledProgram): If provide, this CompiledProgram
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
S
sneaxiy 已提交
102 103 104 105 106 107
            places(list(CUDAPlace)|list(CPUPlace)|None): If provide, only compile
                program in the given places. Otherwise, the places used when compiled 
                is determined by the Executor, and the places used are controlled 
                by environment variables: FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES
                if using GPU; or CPU_NUM if using CPU.  

X
Xin Pan 已提交
108 109 110
        Returns:
            self
        """
111 112 113 114 115
        assert not self._is_data_parallel, "Already compiled with parallel."
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
116
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
117 118 119 120
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
S
sneaxiy 已提交
121 122 123 124 125 126
        if places is not None:
            if not isinstance(places, (list, tuple)):
                places = [places]
            self._places = [_place_obj(p) for p in places]
        else:
            self._places = None
127 128
        return self

F
flame 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_data_parallel = False
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
145

F
flame 已提交
146
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
147 148
        raise NotImplementedError()

149
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
163 164

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
S
sneaxiy 已提交
165 166 167 168 169 170
        has_set_place = (self._places is not None)
        if has_set_place:
            desire_place = _place_obj(self._place)
            for p in self._places:
                assert p._type() == desire_place._type(), \
                    "Place type not match. You may set the wrong type of places"
171
        else:
S
sneaxiy 已提交
172 173 174
            places = cuda_places(
            ) if self._exec_strategy.use_cuda else cpu_places()
            self._places = [_place_obj(p) for p in places]
175 176 177 178 179 180 181 182
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
S
sneaxiy 已提交
183
                self._exec_strategy.num_threads = len(self._places) * 2
184 185

        trainers_endpoints = self._program._trainers_endpoints
D
dzhwinter 已提交
186 187 188

        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
D
dzhwinter 已提交
189
        if self._build_strategy.memory_optimize is None:
D
dzhwinter 已提交
190
            self._build_strategy.memory_optimize = False if self._program._is_mem_optimized else True
D
dzhwinter 已提交
191
        if self._build_strategy.enable_inplace is None:
D
dzhwinter 已提交
192
            self._build_strategy.enable_inplace = False if self._program._is_mem_optimized else True
D
dzhwinter 已提交
193

194 195 196 197 198 199
        if self._build_strategy.num_trainers > 1 and trainers_endpoints:
            assert self._build_strategy.num_trainers == len(
                trainers_endpoints), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = trainers_endpoints

        self._persistable_vars = set([
Q
Qiao Longfei 已提交
200 201
            cpt.to_text(v.name)
            for v in [
202 203 204 205 206 207 208 209 210 211 212 213
                var for var in self._program.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
        ])

        places = list(map(_place_obj, self._places))
        return core.ParallelExecutor(
            places, self._persistable_vars, self._program.desc,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy)

F
flame 已提交
214 215 216 217
    def _compile_inference(self):
        assert self._is_data_parallel is False
        return core.create_paddle_predictor(self._infer_config)

218
    def _compile(self, scope, place):
X
Xin Pan 已提交
219 220 221 222 223 224 225 226 227 228
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
229
        if self._compiled:
X
polish  
Xin Pan 已提交
230 231
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
232
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
233
                raise ValueError("Cannot compile with different place")
234
            return self
X
fix  
Xin Pan 已提交
235
        self._compiled = True
236 237 238 239 240

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
F
flame 已提交
241 242
        elif self._is_inference:
            self._executor = self._compile_inference()
243 244 245 246
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self